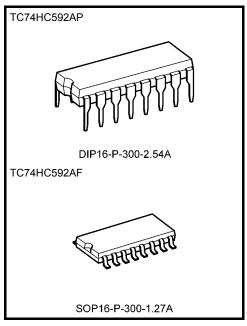
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC592AP,TC74HC592AF

8-Bit Binary Counter with Input Register

The TC74HC592A is high speed CMOS 8-BIT REGISTER COUNTER fabricated with silicon gate C²MOS technology.

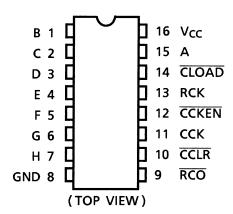
It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

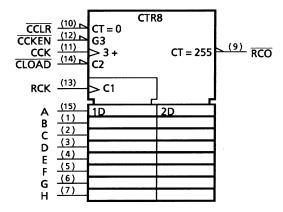

The internal counter counts at positive edge of Counter Clock (CCK) when Counter Clock Enable ($\overline{\text{CCKEN}}$) is held "L" level. If Counter clear ($\overline{\text{CCLR}}$) is held "L", the internal counter is cleared asynchronously to clock.

Input A to H are loaded to register at positive edge of Register Clock (RCK), and the register outputs are loaded to Counter when Counter Load (\overline{CLOAD}) is held "L" level.

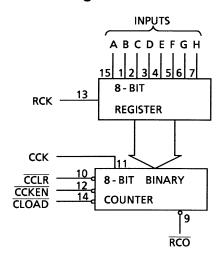
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features


- High speed: $f_{max} = 35 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_a = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 10 LSTTL loads for QA to QH
- Symmetrical output impedance: | I_{OH} | = I_{OL} = 4 mA (min)
- Balanced propagation delays: t_{pLH} ≃ t_{pHL}
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS592


Weight

DIP16-P-300-2.54A: 1.00 g (typ.) SOP16-P-300-1.27A: 0.18 g (typ.)

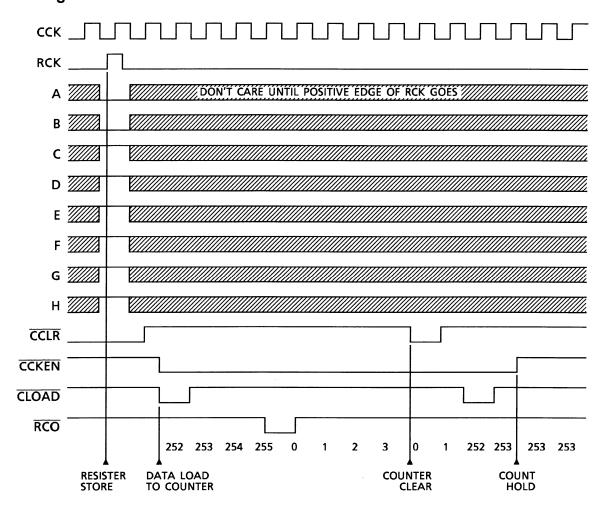

Pin Assignment

IEC Logic Symbol

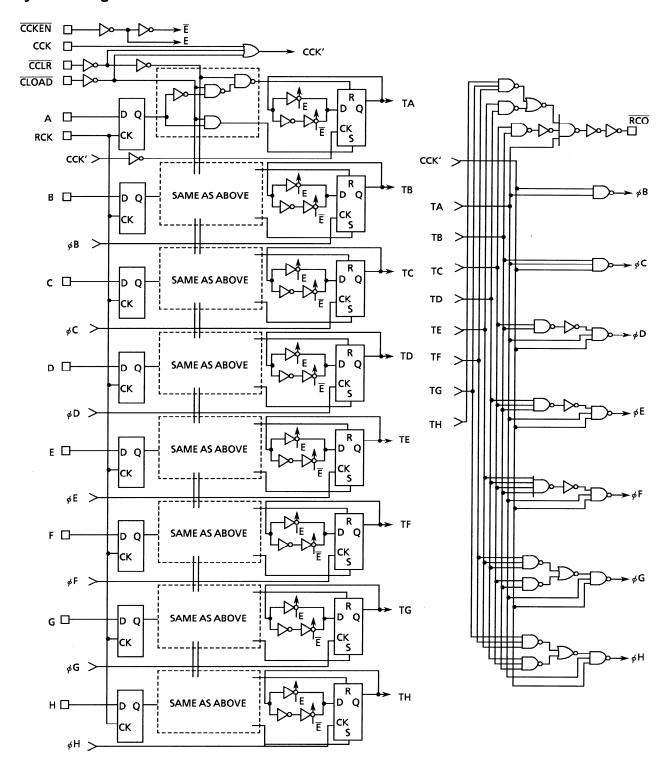
Block Diagram

Truth Table

	Inputs				Function				
RCK	CLOAD	CCLR	CCKEN	CCK	i unction				
Х	L	Н	Х	Х	Register data is loaded into counter				
Х	Н	L	Х	Х	Counter clear				
	Х	Х	Х	Х	The data of A thru H inputs is stored into register				
\Box	Х	Х	Х	Х	Register state is not changed				
Х	Н	Н	L		Counter advances the count				
Х	Н	Н	L	\neg	No count				
Х	Н	Н	Н	Х	No count				


2

X: Don't care


 $\overline{RCO} = \overline{QA' \cdot QB' \cdot QC' \cdot QD' \cdot QE' \cdot QF' \cdot QG' \cdot QH'}$ (QA' to QH': internal outputs of the counter)

2008-11-20

Timing Chart

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	٧
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	PD	500 (DIP) (Note 2) / 180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to $65^{\circ}C$. From Ta = 65 to $85^{\circ}C$ a derating factor of -10 mW/°C shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	−40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol				Ta = 25°C			Ta = -40 to 85°C		Unit
	- Cy201			V _{CC} (V)	Min	Тур.	Max	Min	Max	
		_		2.0	1.50	_	_	1.50	_	
High-level input voltage	V _{IH}			4.5	3.15	_	_	3.15	_	V
, c.i.a.gc				6.0	4.20	_	_	4.20	_	
				2.0	_	_	0.50	_	0.50	
Low-level input voltage	V _{IL}	_		4.5	_	_	1.35	_	1.35	V
1 11 0				6.0	_	_	1.80	_	Max 0 — 5 — 0 .50 1.35 1.80 — — — 3 — — 3 — 0.1 0.1 0.33 0.33 ±1.0	
		V _{IN} = V _{IH} or V _{IL}		2.0	1.9	2.0	_	1.9	_	
			$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	٧
High-level output voltage	V _{OH}			6.0	5.9	6.0	_	5.9	_	
ŭ			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
				2.0	_	0.0	0.1	_	0.1	
			$I_{OL} = 20 \ \mu A$	4.5	_	0.0	0.1	_	0.1	
Low-level output voltage	V _{OL}	V _{IN} = V _{IH} or V _{IL}		6.0	_	0.0	0.1	_	0.1	V
ŭ			I _{OL} = 4 mA	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 5.2 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0			±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or (GND	6.0	_	_	4.0	_	40.0	μА

6

Timing Requirements (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width	the an		2.0	_	75	95	
(CCK, RCK)	tw (H)	_	4.5	_	15	19	ns
(CON, NON)	t _{W (L)}		6.0	_	13	16	
Minimum pulse width			2.0	_	100	125	
(CCLR)	t _{W (L)}	_	4.5	_	20	25	ns
(CCLR)			6.0	_	16	21	
Minimum pulse width			2.0	_	175	220	
(CLOAD)	t _{W (L)}	_	4.5	_	35	44	ns
(CLOAD)			6.0	_	30	37	
Nainting on a state of the state of			2.0	_	75	95	
Minimum set-up time	ts	_	4.5	_	15	19	ns
(CCKEN-CCK)			6.0	_	13	16	
			2.0	_	150	190	
Minimum set-up time	t _s	_	4.5	_	30	38	ns
(RCK-CLOAD)			6.0	_	26	32	
Nainting on a state of the state of			2.0	_	100	125	
Minimum set-up time	ts	_	4.5	_	20	25	ns
(A to H-RCK)			6.0	_	17	21	
			2.0	_	5	5	
Minimum hold time	t _h	_	4.5	_	5	5	ns
			6.0	_	5	5	
A.C			2.0	_	75	95	
Minimum removal time	t _{rem}	_	4.5	_	15	19	ns
(CCLR)			6.0	_	13	16	
NAtional and the second of the			2.0	_	75	95	
Minimum removal time	t _{rem}	_	4.5	_	15	19	ns
(CLOAD)			6.0	_	13	16	
			2.0	_	4	3.5	
Clock frequency	f	_	4.5	_	22	18	MHz
			6.0	_	26	21	

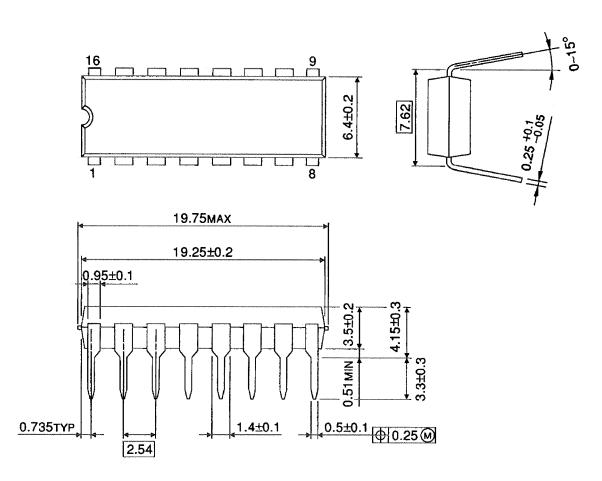
AC Characteristics ($C_L = 15 \text{ pF}$, $V_{CC} = 5 \text{ V}$, $Ta = 25^{\circ}\text{C}$, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Тур.	Max	Unit
Output transition time	t _{TLH}	_	_	6	12	ns
	t _{THL}					
Propagation delay time	t_pLH			25	38	ns
(CCK-RCO)	t _{pHL}	_		20		110
Propagation delay time	t_{pLH}	CLOAD ="L"		39	60	ns
(RCK-RCO)	t_{pHL}	CLOAD - L	_	39	00	115
Propagation delay time	4			24	36	20
(CCLR - RCO)	t _{pLH}	_	_	24	30	ns
Propagation delay time	t _{pLH}			25	- 20	
(CLOAD - RCO)	t _{pHL}	_	_	35	53	ns
Maximum clock frequency	f _{max}	_	25	35	_	MHz

AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40 to 85°C		Unit	
Onaracteristics			V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
Output transition time	t _{TLH} t _{THL}	_	2.0 4.5	_	30 8	75 15		95 19	ns
	-1112		6.0	_	7	13	_	16	
Propagation delay time (CCK- RCO)	t _{pLH} t _{pHL}	_	2.0 4.5 6.0	_ _ _	94 29 24	220 44 37	_ _ _	275 55 47	ns
Propagation delay time (RCK-RCO)	t _{pLH}	CLOAD ="L"	2.0 4.5 6.0	_ _ _	160 45 34	340 68 58	_ _ _	425 85 73	ns
Propagation delay time	t _{pLH}	_	2.0 4.5 6.0	_ _ _	89 28 22	215 43 37	_ _ _	270 54 46	ns
Propagation delay time	t _{pLH} t _{pHL}	_	2.0 4.5 6.0	_ _ _	140 40 30	300 60 51	_ _ _	375 75 64	ns
Maximum clock frequency	f _{max}	_	2.0 4.5 6.0	4 22 26	20 33 49	_ _ _	3.5 18 21	_ _ _	MHz
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Power dissipation capacitance	C _{PD} (Note)	_		_	31	_	_	_	pF

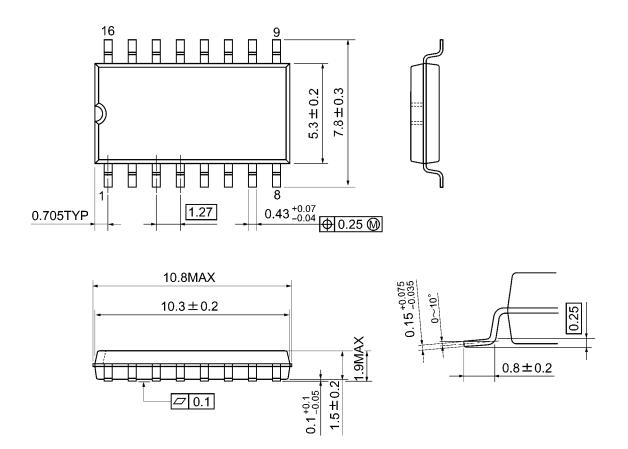
Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


8

Average operating current can be obtained by the equation:

 $I_{CC} (opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Package Dimensions


DIP16-P-300-2.54A Unit: mm

Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
 or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.