

Data Sheet December 14, 2007 FN7283.3

Dual Channel, High Speed, High Current Line Driver with 3-State

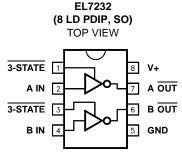
The EL7232 3-state drivers are particularly well suited for ATE and microprocessor based applications. The low quiescent power dissipation makes this part attractive in battery applications. The 2A peak drive capability, makes the EL7232 an excellent choice when driving high speed capacitive lines, as well. The input circuitry provides level shifting from TTL levels to the supply rails. The EL7232 is available in 8 Ld PDIP and 8 Ld SO packages.

Ordering Information

PART NUMBER	PART MARKING	PACKAGE	PKG. DWG. #
EL7232CN	EL7232CN	8 Ld PDIP	MDP0031
EL7232CNZ (Note)	EL7232CN Z	8 Ld PDIP**	MDP0031
EL7232CS	7232CS	8 Ld SOIC	MDP0027
EL7232CS-T7*	7232CS	8 Ld SOIC Tape and Reel	MDP0027
EL7232CSZ (Note)	7232CSZ	8 Ld SOIC (Pb-free)	MDP0027
EL7232CSZ-T7* (Note)	7232CSZ	8 Ld SOIC (Pb-free) Tape and Reel	MDP0027
EL7232CSZ-T13* (Note)	7232CSZ	8 Ld SOIC (Pb-free) Tape and Reel	MDP0027

^{*}Please refer to TB347 for details on reel specifications.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.


Features

- 3-State output
- 3V and 5V input compatible
- · Clocking speeds up to 10MHz
- 20ns Switching/delay time
- 2A Peak drive
- Low, matched output impedance 50
- · Low quiescent current 2.5mA
- Wide operating voltage 4.5V to 16V
- Pb-free available (RoHS compliant)

Applications

- · Parallel bus line drivers
- EPROM and PROM programming
- Motor controls
- · Charge pumps
- · Sampling circuits
- Pin drivers
- Bridge circuits

Pinout

Manufactured under U.S. Patent Nos. 5,334,883, #5,341,047

Truth Table

3-STATE	INPUT	OUTPUT
1	0	1
1	1	0
0	0	Open
0	1	Open

^{**}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Absolute Maximum Ratings $(T_A = +25^{\circ}C)$

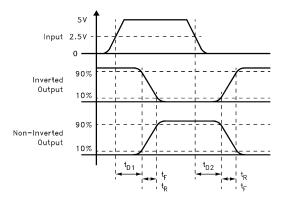
Supply (V+ to Gnd)	16.5V
Input Pins0.3V to +0.3V a	bove V+
Combined Peak Output Current	4A

Thermal Information

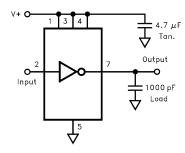
Operating Junction Temperature
Storage Temperature Range
Ambient Operating Temperature
Power Dissipation
SOIC570mW
PDIP
Pb-free reflow profile see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

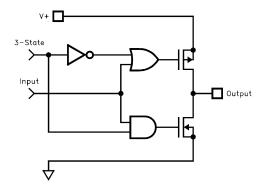
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$


DC Electrical Specifications $T_A = +25$ °C, V = 15V unless otherwise specified.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT			11	'	1	1
V _{IH}	Logic "1" Input Voltage		2.4			V
I _{IH}	Logic "1" Input Current	@V+		0.1	10	μA
V _{IL}	Logic "0" Input Voltage				0.8	V
I _{IL}	Logic "0" Input Current	@0V		0.1	10	μΑ
V _{HVS}	Input Hysteresis			0.3		V
OUTPUT		,	11		•	
R _{OH}	Pull-Up Resistance	I _{OUT} = -100mA		3	6	Ω
R _{OL}	Pull-Down Resistance	I _{OUT} = +100mA		4	6	Ω
loff	3-State Output Leakage	V _{OUT} = V+ V _{OUT} = 0V	0.2		10	μА
I _{PK}	Peak Output Current	Source Sink		2.0 2.0		А
I _{DC}	Continuous Output Current	Source/Sink	100			mA
POWER SUPP	LY	,	1	1	1	1
Is	Power Supply Current	Inputs High		1	2.5	mA
V _S	Operating Voltage		4.5		16	V


AC Electrical Specifications $T_A = +25$ °C, V = 15V unless otherwise specified.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CH	ARACTERISTICS	,		'		
t _R	Rise Time	$C_L = 500pF$ $C_L = 1000pF$		7.5 10		ns
t _F	Fall Time	C _L = 500pF C _L = 1000pF		10 13	20	ns
t _{D-ON}	Turn-On Delay Time			18	25	ns
t _{D-OFF}	Turn-Off Delay Time			20	25	ns
HIZ _{-ON}	Three-State Delay, Enable			22		ns
HIZ _{-OFF}	Three-State Delay, Disable			22		ns


Timing Table

Standard Test Configuration

Simplified Schematic

Typical Performance Curves

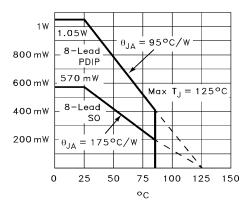


FIGURE 1. MAX POWER/DERATING CURVES

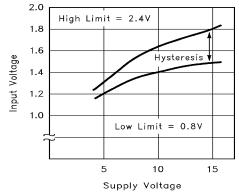


FIGURE 2. SWITCH THRESHOLD vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

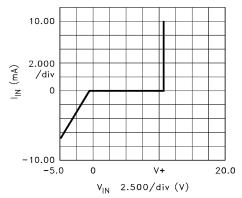


FIGURE 3. INPUT CURRENT vs VOLTAGE

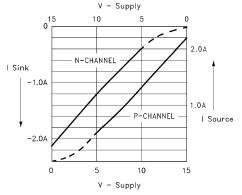
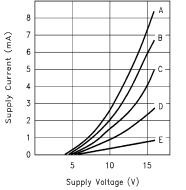



FIGURE 4. PEAK DRIVE vs SUPPLY VOLTAGE

CASE:

A ALL INPUTS GND

B 3 INPUTS GND

C 2 INPUTS GND

D 1 INPUTS GND

E ALL INPUTS V+

FIGURE 5. QUIESCENT SUPPLY CURRENT

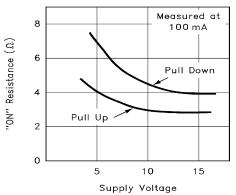


FIGURE 6. ON-RESISTANCE vs SUPPLY VOLTAGE

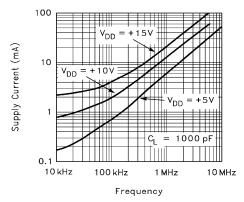


FIGURE 7. AVERAGE SUPPLY CURRENT vs VOLTAGE AND FREQUENCY

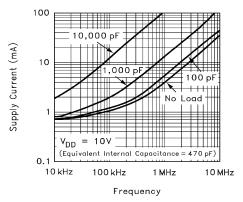


FIGURE 8. AVERAGE SUPPLY CURRENT VS CAPACITIVE LOAD

<u>intersil</u>

Typical Performance Curves (Continued)

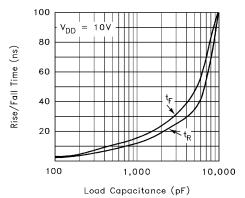


FIGURE 9. RISE/FALL TIME vs LOAD

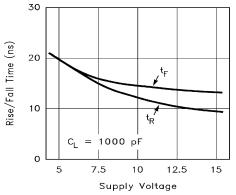


FIGURE 10. RISE/FALL TIME vs SUPPLY VOLTAGE

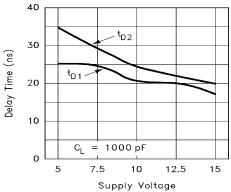


FIGURE 11. PROPAGATION DELAY vs SUPPLY VOLTAGE

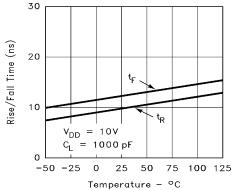
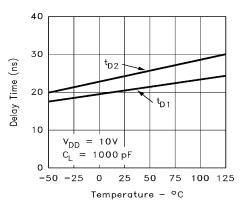
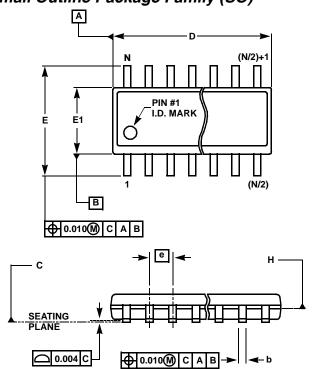
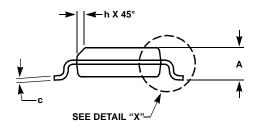
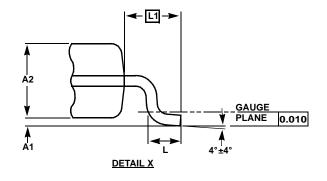


FIGURE 12. RISE/FALL TIME vs TEMPERATURE

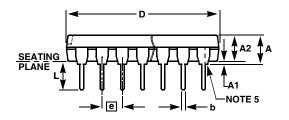

FIGURE 13. PROPAGATION DELAY vs TEMPERATURE

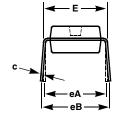
5

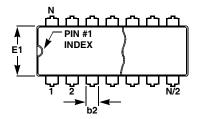
Small Outline Package Family (SO)

MDP0027

SMALL OUTLINE PACKAGE FAMILY (SO)


	INCHES								
SYMBOL	SO-8	SO-14	SO16 (0.150")	SO16 (0.300") (SOL-16)	SO20 (SOL-20)	SO24 (SOL-24)	SO28 (SOL-28)	TOLERANCE	NOTES
Α	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	±0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	±0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	±0.003	-
С	0.009	0.009	0.009	0.011	0.011	0.011	0.011	±0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	±0.004	1, 3
Е	0.236	0.236	0.236	0.406	0.406	0.406	0.406	±0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	±0.004	2, 3
е	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	±0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	=
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	=
N	8	14	16	16	20	24	28	Reference	-


NOTES:


Rev. M 2/07

- 1. Plastic or metal protrusions of 0.006" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994

Plastic Dual-In-Line Packages (PDIP)

MDP0031

PLASTIC DUAL-IN-LINE PACKAGE

		INCHES					
SYMBOL	PDIP8	PDIP14	PDIP16	PDIP18	PDIP20	TOLERANCE	NOTES
Α	0.210	0.210	0.210	0.210	0.210	MAX	
A1	0.015	0.015	0.015	0.015	0.015	MIN	
A2	0.130	0.130	0.130	0.130	0.130	±0.005	
b	0.018	0.018	0.018	0.018	0.018	±0.002	
b2	0.060	0.060	0.060	0.060	0.060	+0.010/-0.015	
С	0.010	0.010	0.010	0.010	0.010	+0.004/-0.002	
D	0.375	0.750	0.750	0.890	1.020	±0.010	1
Е	0.310	0.310	0.310	0.310	0.310	+0.015/-0.010	
E1	0.250	0.250	0.250	0.250	0.250	±0.005	2
е	0.100	0.100	0.100	0.100	0.100	Basic	
eA	0.300	0.300	0.300	0.300	0.300	Basic	
еВ	0.345	0.345	0.345	0.345	0.345	±0.025	
L	0.125	0.125	0.125	0.125	0.125	±0.010	
N	8	14	16	18	20	Reference	

Rev. C 2/07

NOTES:

- 1. Plastic or metal protrusions of 0.010" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.
- 4. Dimension eB is measured with the lead tips unconstrained.
- 5. 8 and 16 lead packages have half end-leads as shown.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com