

Data Sheet January 3, 2006 FN2904.5

4MHz, High Supply Voltage Operational Amplifiers

HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.

For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier "off", when the chip reaches a certain temperature level.

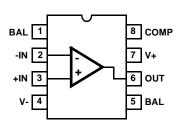
These amplifiers deliver $\pm 35 \text{V}$ common mode input voltage range, $\pm 35 \text{V}$ output voltage swing, and up to $\pm 40 \text{V}$ supply range for use in such designs as regulators, power supplies, and industrial control systems. 4MHz gain bandwidth and $5 \text{V}/\mu \text{s}$ slew rate make these devices excellent components for high performance signal conditioning applications. Outstanding input and output voltage swings coupled with a low 5nA offset current make these amplifiers excitation designs.

Features

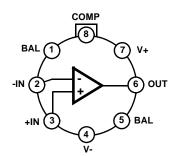
•	Output Voltage Swing±35V
•	Supply Voltage
•	Offset Current. 5nA
•	Bandwidth 4MHz
•	Slew Rate
•	Common Mode Input Voltage Range ±35V

· Output Overload Protection

Applications


- Industrial Control Systems
- Power Supplies
- · High Voltage Regulators
- · Resolver Excitation
- · Signal Conditioning

Ordering Information


PART NUMBER	PART MARKING	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
HA2-2640-2	HA2-2640-2	-55 to 125	8 Pin Metal Can	T8.C
HA7-2640-2	HA7-2640-2	-55 to 125	8 Ld CERDIP	F8.3A
HA2-2645-5	HA2-2645-5	0 to 75	8 Pin Metal Can	T8.C
HA7-2645-5	HA7-2645-5	0 to 75	8 Ld CERDIP	F8.3A

Pinouts

HA-2640/2645 (**CERDIP**) TOP VIEW

HA-2640/2645 (METAL CAN) TOP VIEW

(TO-99 CASE VOLTAGE = FLOATING)

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals	100V
Differential Input Voltage Range	. 37V
Output Current Full Short Circuit Prote	ection

Operating Conditions

Temperature Range	
HA-2640-2	 -55°C to 125°C
HA-2645-5	 0°C to 75°C

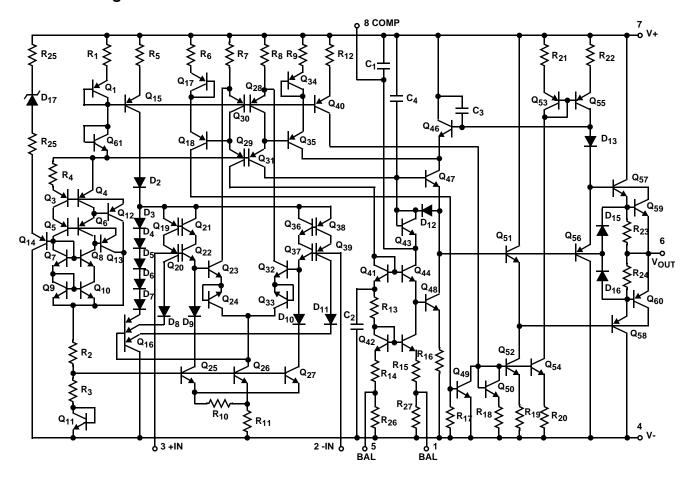
Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (oC/W)	θ _{JC} (oC/W)
CERDIP Package	135	50
Metal Can Package	165	80
Maximum Junction Temperature		175 ⁰ C
Maximum Storage Temperature Range	6	5 ⁰ C to 150 ⁰ C
Maximum Lead Temperature (Soldering 1	0s)	300°C

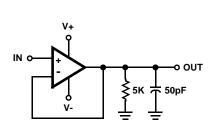
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

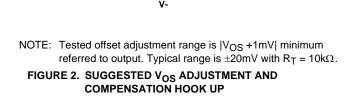
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.


Electrical Specifications $V_{SUPPLY} = \pm 40V$, $R_L = 5k\Omega$, Unless Otherwise Specified

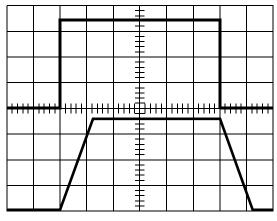
		TEMP	HA-2640-2			HA-2645-5			
PARAMETER	TEST CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS									
Offset Voltage		25	-	2	4	-	2	6	mV
		Full		-	6	-	-	7	mV
Average Offset Voltage Drift		Full	-	15	-	-	15	-	μV/ ^o C
Bias Current		25	-	10	25	-	12	30	nA
		Full	-	-	50	-	-	50	nA
Offset Current		25	-	5	12	-	15	30	nA
		Full	-	-	35	-	-	50	nA
Input Resistance (Note 2)		25	50	250	-	40	200	-	МΩ
Common Mode Range		Full	±35	-	-	±35	-	-	V
TRANSFER CHARACTERISTICS	3								
Large Signal Voltage Gain	$V_{OUT} = \pm 30V$	25	100	200	-	100	200	-	kV/V
		Full	75	-	-	75	-	-	kV/V
Common Mode Rejection Ratio	V _{CM} = ±20V	Full	80	100	-	74	100	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V/V
Unity Gain Bandwidth	V _{OUT} = 90mV	25	-	4	-	-	4	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing		Full	±35	-	-	±35	-	-	V
Output Current	$R_L = 1k\Omega$	25	±12	±15	-	±10	±12	-	mA
Output Resistance	Open Loop	25	-	500	-	-	500	-	Ω
Full Power Bandwidth (Note 3)	$V_{OUT} = \pm 35V$	25	-	23	-	-	23	-	kHz
TRANSIENT RESPONSE A _V = +	1, $C_L = 50 pF$, $R_L = 5 k\Omega$								
Rise Time	$V_{OUT} = \pm 200 \text{mV}$	25	-	60	135	-	60	135	ns
Overshoot	$V_{OUT} = \pm 200 \text{mV}$	25	-	15	30		15	40	%
Slew Rate		25	±3	±5	-	±2.5	±5	-	V/μs
POWER SUPPLY CHARACTERI	STICS	•	•	•		•	•		•
Supply Current		25	-	3.2	3.8	-	3.2	4.5	mA
Supply Voltage Range		Full	±10	-	±40	±10	-	±40	V
Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 40V$	Full	80	90	-	74	90	-	dB


NOTES:


- 2. This parameter is based upon design calculations.
- 3. Full Power Bandwidth guaranteed based upon slew rate measurement: FPBW = S.R./ $2\pi V_{PEAK}$; V_{PEAK} = 35V.

Schematic Diagram

Test Circuits and Waveform



10k Ω

COMP

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

Test Circuits and Waveform (Continued)

Vertical = 10V/Div., Horizontal = $5\mu s/Div.$

NOTE: $R_L = 5k\Omega$, $C_L = 50pF$, $T_A = 25^{o}C$, $V_S = \pm 40V$ FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE

Typical Performance Curves $V_S = \pm 40V$, $T_A = 25^{o}C$, Unless Otherwise Specified

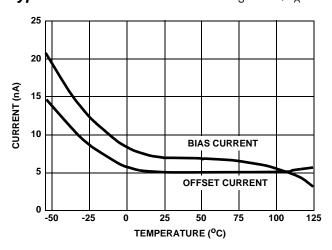


FIGURE 4. INPUT BIAS AND OFFSET CURRENT vs **TEMPERATURE**

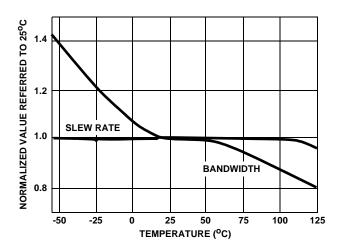


FIGURE 6. NORMALIZED AC PARAMETERS vs TEMPERATURE

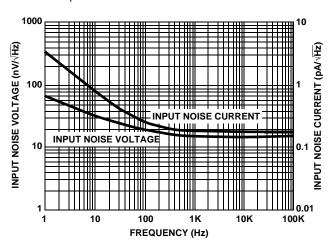


FIGURE 5. INPUT NOISE CHARACTERISTICS

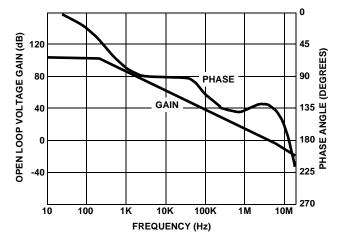


FIGURE 7. OPEN LOOP FREQUENCY RESPONSE

in<u>tersil</u> FN2904.5

Typical Performance Curves $V_S = \pm 40V$, $T_A = 25^{\circ}C$, Unless Otherwise Specified (Continued)

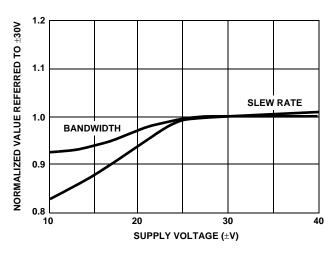


FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY **VOLTAGE AT 25°C**

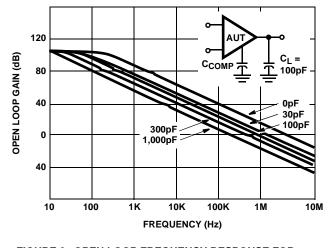


FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM **COMPENSATION PIN TO GROUND**

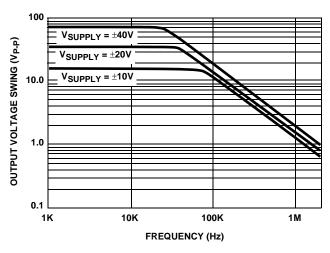


FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

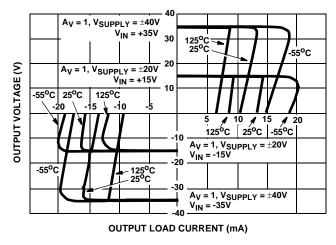


FIGURE 11. OUTPUT CURRENT CHARACTERISTIC

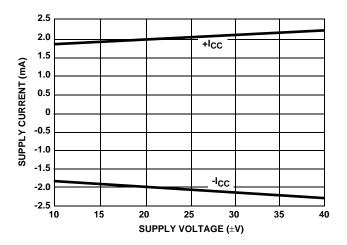


FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

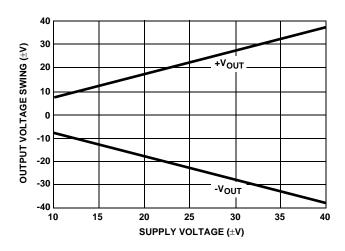


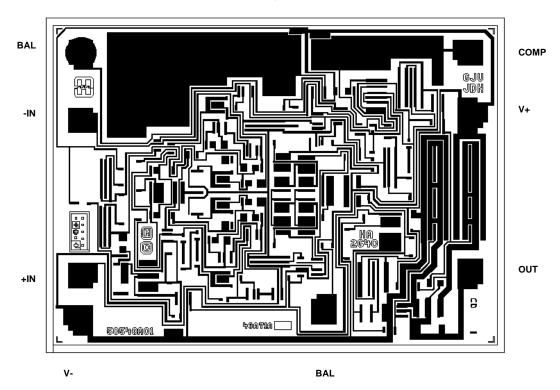
FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

Die Characteristics

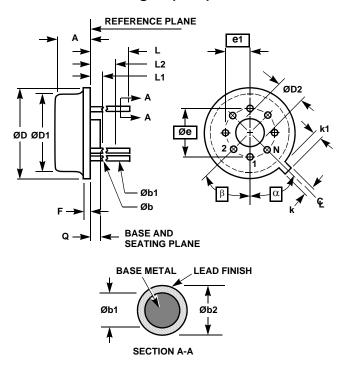
SUBSTRATE POTENTIAL (Powered Up):

Unbiased

TRANSISTOR COUNT:


76

PROCESS:

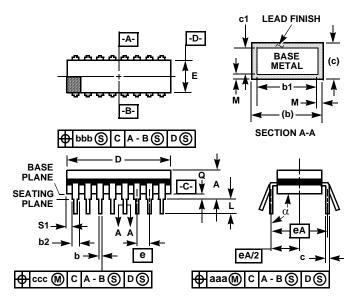

HV200 Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2640, HA-2645

Metal Can Packages (Can)

NOTES:


- (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
- 2. Measured from maximum diameter of the product.
- 3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α , looking at the bottom of the package.
- 4. N is the maximum number of terminal positions.
- 5. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 6. Controlling dimension: INCH.

T8.C MIL-STD-1835 MACY1-X8 (A1) 8 LEAD METAL CAN PACKAGE

	INC	HES	MILLIN	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
Α	0.165	0.185	4.19	4.70	-	
Øb	0.016	0.019	0.41	0.48	1	
Øb1	0.016	0.021	0.41	0.53	1	
Øb2	0.016	0.024	0.41	0.61	-	
ØD	0.335	0.375	8.51	9.40	-	
ØD1	0.305	0.335	7.75	8.51	-	
ØD2	0.110	0.160	2.79	4.06	-	
е	0.200	BSC	5.08	-		
e1	0.100	BSC	2.54	-		
F	-	0.040	-	1.02	-	
k	0.027	0.034	0.69	0.86	-	
k1	0.027	0.045	0.69	1.14	2	
L	0.500	0.750	12.70	19.05	1	
L1	-	0.050	-	1.27	1	
L2	0.250	-	6.35	-	1	
Q	0.010	0.045	0.25	1.14	-	
α	45° BSC		45° BSC		3	
β	45° BSC		45° BSC		3	
N	8	3		8	4	

Rev. 0 5/18/94

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass overrun
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
Е	0.220	0.310	5.59	7.87	5
е	0.100 BSC		2.54	-	
eA	0.300	BSC	7.62 BSC		-
eA/2	0.150	BSC	3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105 ⁰	90°	105 ⁰	-
aaa	-	0.015	-	0.38	-
bbb	=	0.030	=	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	8	3	8	8	

Rev. 0 4/94

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com