Dual Video Driver with Low Pass Filter

The ISL59118 is a dual video driver/reconstruction filter with a -3dB roll-off frequency of 9 MHz . Operating from single supplies ranging from +2.5 V to +3.6 V and drawing only 4.5 mA quiescent current, the ISL59118 is ideally suited for low power, battery-operated applications. Additionally, enable pins shut the part down in under 14 ns .

The ISL59118 is designed to meet the needs for very low power and bandwidth required in battery-operated communication, instrumentation, and modern industrial applications such as video on demand, cable set-top boxes, MP3 players, and HDTV. The ISL59118 is offered in a space-saving μ TQFN Pb -free package guaranteed to a 0.6 mm maximum height constraint and specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Pinout

Features

- 3rd order 9 MHz reconstruction filter
- $40 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Low supply current $=4.5 \mathrm{~mA}$
- Maximum Power-down current $<0.5 \mu \mathrm{~A}$
- Supplies from 2.5 V to 3.6 V
- Rail-to-rail output
- μ TQFN package
- Pb-free plus anneal available (RoHS compliant)

Applications

- Video amplifiers
- Portable and handheld products
- Communications devices
- Cable set-top boxes
- Satellite set-top boxes
- MP3 players
- HDTV
- Personal video recorders

Block Diagram

Ordering Information

PART NUMBER (Note)	PART MARKING	TAPE AND REEL	TEMP RANGE (C)	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL59118IRUZ-T7	FL	$7^{\prime \prime}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Ld μ TQFN	$-10.2 .1 \times 1.6 \mathrm{~A}$

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$
Supply Voltage from $V_{\text {DD }}$ to GND . 4.2V Input Voltage . V VD $_{\text {D }}+0.3 \mathrm{~V}$ to GND -0.3 V
Continuous Output Current . 40mA
Power Dissipation . See Curves
Operating Junction Temperature . $+125^{\circ} \mathrm{C}$
ESD Classification Human Body Model . 2500V
Machine Model . 300V
Storage Temperature . $65^{\circ} \mathrm{C}$ to + 125 $^{\circ} \mathrm{C}$
Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{D D}=3.3 V, T_{A}=+25^{\circ} \mathrm{C}, R_{L}=150 \Omega$ to $G N D$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS						
$V_{\text {DD }}$	Supply Voltage Range		2.5		3.6	V
IDD-ON1	CH1 Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}, \mathrm{EN}_{1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{EN}_{2}=\mathrm{GND} \text {, no } \\ & \text { load } \end{aligned}$		3.1	4.0	mA
IDD-ON2	CH2 Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}, \mathrm{EN}_{1}=\mathrm{GND}, \mathrm{EN}_{2}=\mathrm{V}_{\mathrm{DD}}, \mathrm{no} \\ & \text { load } \end{aligned}$		1.4	2.0	mA
IDD	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mV}$, EN1 $=\mathrm{EN} 2=\mathrm{V}_{\mathrm{DD}}$, no load		4.5	6.0	mA
IDD-OFF	Shutdown Supply Current	EN1 = EN2 = GND		0.1	0.5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CLAMP }}$	Input clamp voltage	$\mathrm{I}_{\mathrm{IN}}=-100 \mu \mathrm{~A}$	-30	-15	10	mV
IDOWN	Input clamp discharge current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	0.6	1.1	1.6	$\mu \mathrm{A}$
lup	Input clamp charge current	$\mathrm{V}_{\text {IN }}=-0.1 \mathrm{~V}$		-3.6	-3.0	mA
R_{IN}	Input resistance	$0.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<1 \mathrm{~V}$	10			$\mathrm{M} \Omega$
$\mathrm{V}_{\text {OLS }}$	Output Level Shift Voltage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, no load	60	130	200	mV
A_{V}	Voltage Gain	$R_{L}=150 \Omega$	1.95	1.99	2.04	V/V
ΔA_{V}	CH1- CH 2 gain mismatch		-2	± 0.5	2	\%
PSRR	DC Power Supply Rejection	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.3 V	40	60		dB
V_{OH}	Output Voltage High Swing	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND	2.85	3.2		V
Isc	Output Short-Circuit Current	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$, to GND through 10Ω	100	145		mA
IENABLE	EN1, EN2 Input Current	$\mathrm{OV}<\mathrm{VEN} \times$ < 3.3 V	-0.2	0.001	+0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Disable Threshold	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.3 V			0.8	V
V_{IH}	Enable Threshold	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.3 V	2.0			V
ROUT	Shutdown Output Impedance	$\mathrm{EN}=0 \mathrm{~V}, \mathrm{DC}$	5.0		7.5	$\mathrm{k} \Omega$
		$\mathrm{EN}=0 \mathrm{~V}, \mathrm{f}=4.5 \mathrm{MHz}$		3.4		$\mathrm{k} \Omega$
AC PERFORMANCE						
$\mathrm{BW}_{0.1 \mathrm{~dB}}$	$\pm 0.1 \mathrm{~dB}$ Bandwidth	$\mathrm{R}_{\text {SOURCE }}=75 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		5.6		MHz
		$R_{\text {SOURCE }}=500 \Omega, R_{L}=150 \Omega, C_{L}=5 p F$		3.9		MHz
$\mathrm{BW}_{3 \mathrm{~dB}}$	-3dB Bandwidth	$\mathrm{R}_{\text {SOURCE }}=75 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		8.8		MHz
		$\mathrm{R}_{\text {SOURCE }}=500 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		7.8		MHz
	Normalized Stopband Gain	$\mathrm{f}=27 \mathrm{MHz}, \mathrm{R}_{\text {SOURCE }}=75 \Omega$		-28.5		dB
		$\mathrm{f}=27 \mathrm{MHz}$, RSOURCE $=500 \Omega$		-30.6		dB

Electrical Specifications $V_{D D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND , unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
dG	Differential Gain	NTSC and PAL		0.10		\%
dP	Differential Phase	NTSC and PAL		0.5		。
D/DT	Group Delay Variation	$\mathrm{f}=100 \mathrm{kHz}, 5 \mathrm{MHz}$		5.4		ns
SNR	Signal To Noise Ratio	100\% white signal		65		dB
ton	Enable Time	$\mathrm{V}_{\text {IN }}=500 \mathrm{mV}$, $\mathrm{V}_{\text {OUT }}$ to 1%		200		ns
toff	Disable Time	$\mathrm{V}_{\text {IN }}=500 \mathrm{mV}$, $\mathrm{V}_{\text {OUT }}$ to 1%		14		ns
+SR	Positive Slew Rate	10% to 90%, $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$ step	30	40	50	$\mathrm{V} / \mu \mathrm{s}$
-SR	Negative Slew Rate	90% to $10 \%, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}$ step	-30	-40	-50	V/ $/ \mathrm{s}$
t_{F}	Fall Time	$2.5 \mathrm{~V}_{\text {STEP, }}$ 80\% - 20%		25		ns
t_{R}	Rise Time	$2.5 \mathrm{~V}_{\text {STEP, }}$ 20\% - 80\%		22		ns

Connection Diagram

Pin Descriptions

PIN NUMBER	PIN NAME	
1	IN_{1}	Channel 1 Input
2	NC	No Connection
3	IN_{2}	Channel 2 Input
4	EN_{1}	Enable Channel 1
5	$\mathrm{~V}_{\mathrm{DD}}$	Positive Power Supply
6	EN_{2}	Enable Channel 2
7	OUT_{2}	No Connection
8	NC^{2}	Channel 2 Output
9	OUT_{1}	Channel 1 Output
10	GND	Ground

Typical Performance Curves

FIGURE 1. GAIN vs FREQUENCY -0.1dB

FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS CLOAD

FIGURE 2. GAIN vs FREQUENCY -3dB POINT

FIGURE 4. MAXIMUM OUTPUT MAGNITUDE vs INPUT MAGNITUDE

Typical Performance Curves (Continued)

FIGURE 5. PHASE vs FREQUENCY

FIGURE 7. OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 9. MAXIMUM OUTPUT vs LOAD RESISTANCE

FIGURE 6. PSRR vs FREQUENCY

FIGURE 8. ISOLATION vs FREQUENCY

FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 11. LARGE SIGNAL STEP RESPONSE

FIGURE 13. ENABLE TIME

FIGURE 15. HARMONIC DISTORTION vs FREQUENCY

FIGURE 12. SMALL SIGNAL STEP RESPONSE

FIGURE 14. DISABLE TIME

FIGURE 16. HARMONIC DISTORTION vs OUTPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 17. GROUP DELAY vs FREQUENCY

FIGURE 18. -3dB BANDWIDTH vs INPUT RESISTANCE

FIGURE 19. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 20. UNWEIGHTED NOISE FLOOR

Typical Performance Curves (Continued)

FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Application Information

The ISL59118 is a single-supply rail-to-rail dual (two composite channel) video amplifier with internal sync tip clamps, a typical -3 dB bandwidth of 9 MHz and slew rate of about $40 \mathrm{~V} / \mu \mathrm{s}$. This part is ideally suited for applications requiring high performance with very low power consumption. As the performance characteristics and features illustrate, the ISL59118 is optimized for portable video applications.

Internal Sync Clamp

Embedded video DACs typically use ground as their most negative supply. This places the sync tip voltage at a minimum of 0 V . Presenting a 0 V input to most single supply amplifiers will saturate the output stage of the amplifier resulting in a clipped sync tip and degraded video image.
The ISL59118 features an internal sync clamp and offset function that level shifts the entire video signal to the optimum level before it reaches the amplifiers' input stage. These features also help avoid saturation of the output stage of the amplifier by setting the signal closer to the best voltage range.

The simplified block diagram on the front page shows the basic operation of the ISL59118's sync clamp. The inputs' AC-coupled video sync signal is pulled negative by a current source at the input. When the sync tip goes below the comparator threshold, the comparator output goes high, pulling up on the input through the diode, forcing current into the coupling capacitor until the voltage at the input is again 0 V , and the comparator turns off. This forces the sync tip clamp to always be 0 V , setting the offset for the entire video signal.

FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

The Sallen Key Low Pass Filter

The Sallen Key is a classic low pass configuration. This provides a very stable low pass function, and in the case of the ISL59118, a three-pole roll-off at 9MHz. The three-pole function is accomplished with an RC low pass network placed in series with and before the Sallen Key. One pole provided by the RC network and poles two and three provided by the Sallen Key for a nice three-pole roll-off at 9 MHz .

Output Coupling

The ISL59118 can be AC or DC coupled to its output. When AC coupling, a $220 \mu \mathrm{~F}$ coupling capacitor is recommended to ensure that low frequencies are passed, preventing video "tilt" or "droop" across a line.

The ISL59118's internal sync clamp makes it possible to DC couple the output to a video load, eliminating the need for any AC coupling capacitors, saving board space, cost, and eliminating any "tilt" or offset shift in the output signal. The trade off is larger supply current draw, since the DC component of the signal is now dissipated in the load resistor. Typical load current for AC coupled signals is 5 mA compared to 10 mA for DC coupling.

Output Drive Capability

The ISL59118 does not have internal short circuit protection circuitry. If the output is shorted indefinitely, the power dissipation could easily overheat the die or the current could eventually compromise metal integrity. Maximum reliability is maintained if the output current never exceeds $\pm 40 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnect. Note that for transient short circuits, the part is robust.
Short circuit protection can be provided externally with a back match resistor in series with the output placed close as possible to the output pin. In video applications this would be a 75Ω resistor and will provide adequate short circuit protection to the device. Care should still be taken not to stress the device with a short at the output.

Power Dissipation

With the high output drive capability of the ISL59118, it is possible to exceed the $+125^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions.
Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the amplifier in a safe operating area.

The maximum power dissipation allowed in a package is determined according to:
$P D_{\text {MAX }}=\frac{T_{J M A X}-T_{\text {AMAX }}}{\Theta_{J A}}$
Where:
$T_{J M A X}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\Theta_{\mathrm{JA}}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
for sourcing:

$$
\mathbf{P D}_{\text {MAX }}=\mathbf{V}_{\mathbf{S}} \times \mathbf{I}_{\text {SMAX }}+\left(\mathbf{V}_{\mathbf{S}^{-}} \mathbf{V}_{\text {OUT }}\right) \times \frac{\mathbf{V}_{\text {OUT }}}{\mathbf{R}_{\mathbf{L}}}
$$

for sinking:

$$
\mathbf{P D}_{\mathbf{M A X}}=\mathbf{V}_{\mathbf{S}} \times \mathbf{I}_{\mathbf{S M A X}}+\left(\mathbf{V}_{\text {OUT }}-\mathbf{V}_{\mathbf{S}}\right) \times \mathbf{I}_{\text {LOAD }}
$$

Where:
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
ISMAX = Maximum quiescent supply current
$\mathrm{V}_{\text {OUT }}=$ Maximum output voltage of the application
$R_{\text {LOAD }}=$ Load resistance tied to ground
L LOAD $=$ Load current

Power Supply Bypassing Printed Circuit Board Layout

As with any modern operational amplifier, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathrm{S}^{+}}$to GND will suffice.

Printed Circuit Board Layout

For good AC performance, parasitic capacitance should be kept to minimum. Use of wire wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Ultra Thin Quad Flat No-Lead Plastic Package (UTQFN)

L10.2.1x1.6A
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE

SYMBOL	MILLIMETERS			NOTES
	MIN	NOMINAL	MAX	
A	0.45	0.50	0.55	-
A1	-	-	0.05	-
A3	0.127 REF			-
b	0.15	0.20	0.25	5
D	2.05	2.10	2.15	-
E	1.55	1.60	1.65	-
e	0.50 BSC			
k	0.20	-	-	-
L	0.35	0.40	0.45	-
N	10			
Nd	4			
Ne	1			
θ	0	-	12	4

NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on D and E side, respectively.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Maximum package warpage is 0.05 mm .
8. Maximum allowable burrs is 0.076 mm in all directions.
9. Same as JEDEC MO-255UABD except:

No lead-pull-back, "A" MIN dimension $=0.45$ not 0.50 mm "L" MAX dimension $=0.45$ not 0.42 mm .
10. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389.

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

