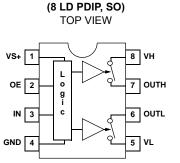
Data Sheet

March 9, 2006

High Performance Pin Driver

intersil

The EL7155 high performance pin driver with 3-state is suited to many ATE and level-shifting applications. The 3.5A peak drive capability makes this part an excellent choice when driving high capacitance loads.


Output pins OUT_H and OUT_L are connected to input pins V_H and V_L respectively, depending on the status of the IN pin. One of the output pins is always in tri-state, except when the OE pin is active low, in which case both outputs are in 3-state mode. The isolation of the output FETs from the power supplies enables V_H and V_L to be set independently, enabling level-shifting to be implemented.

This pin driver has improved performance over existing pin drivers. It is specifically designed to operate at voltages down to 0V across the switch elements while maintaining good speed and on-resistance characteristics.

Available in 8 Ld SO and 8 Ld PDIP packages, the EL7155 is specified for operation over the full -40°C to +85°C temperature range.

EL7155

Pinout

Features

- Clocking speeds up to 40MHz
- 15ns tr/tf at 2000pF C_{LOAD}
- 0.5ns rise and fall times mismatch
- 0.5ns T_{ON}-T_{OFF} prop delay mismatch
- 3.5pF typical input capacitance
- 3.5A peak drive
- Low on resistance of 3.5Ω
- · High capacitive drive capability
- Operates from 4.5V up to 16.5V
- · Pb-free plus anneal available (RoHS compliant)

Applications

- ATE/burn-in testers
- Level shifting
- IGBT drivers
- CCD drivers

Ordering Information

PART NUMBER	PART MARKING	TAPE & REEL	PACKAGE	PKG. DWG. #
EL7155CN	EL7155CN	-	8 Ld PDIP	MDP0031
EL7155CS	7155CS	-	8 Ld SO	MDP0027
EL7155CS-T7	7155CS	7"	8 Ld SO	MDP0027
EL7155CS-T13	7155CS	13"	8 Ld SO	MDP0027
EL7155CSZ (Note)	7155CSZ	-	8 Ld SO (Pb-free)	MDP0027
EL7155CSZ-T7 (Note)	7155CSZ	7"	8 Ld SO (Pb-free)	MDP0027
EL7155CSZ-T13 (Note)	7155CSZ	13"	8 Ld SO (Pb-free)	MDP0027

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings (T_A = 25°C)

Supply Voltage (V _S + to V _L)+1	8V
$V_{H}-V_{L}$, V_{H} to GND, V_{S} + to V_{H}	5V
Input Voltage	٧s
Continuous Output Current	'nÃ
Storage Temperature Range65°C to +150	°C

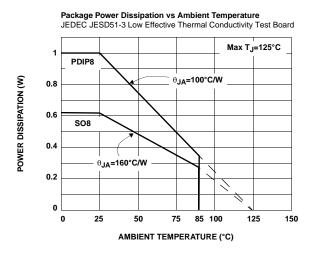
 Ambient Operating Temperature
 -40°C to +85°C
 Operating Junction Temperature
 125°C

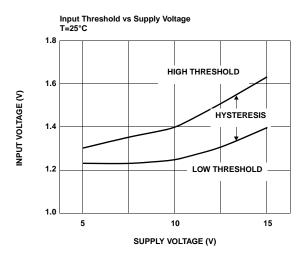
 Power Dissipation
 see curves
 See curves

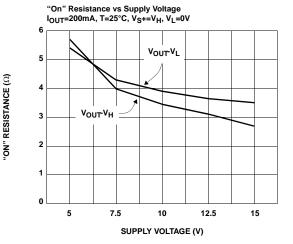
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

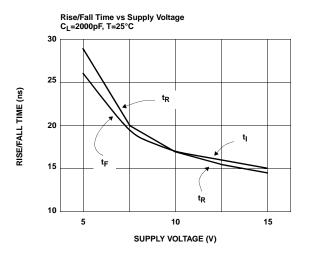
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

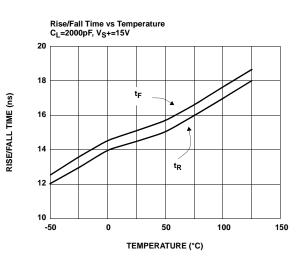
Electrical Specifications V_{S} + = +15V, V_{H} = +15V, V_{L} = 0V, T_{A} = 25°C, unless otherwise specified.


PARAMETER	DESCRIPTION	CONDITION	MIN	ТҮР	MAX	UNIT
INPUT			1	1	1	1
V _{IH}	Logic '1' Input Voltage		2.4			V
IIH	Logic '1' Input Current	V _{IH} = V _S +		0.1	10	μA
V _{IL}	Logic '0' Input Voltage				0.8	V
IIL	Logic '0' Input Current	V _{IL} = 0V		0.1	10	μA
C _{IN}	Input Capacitance			3.5		pF
R _{IN}	Input Resistance			50		MΩ
OUTPUT	<u>.</u>					
R _{OVH}	ON Resistance V_{H} to OUT_{H}	I _{OUT} = -200mA		2.7	4.5	Ω
R _{OVL}	ON Resistance V_L to OUT_L	I _{OUT} = +200mA		3.5	5.5	Ω
IOUT	Output Leakage Current	$OE = 0V, OUT_H = V_L, OUT_L = V_S +$		0.1	10	μA
I _{PK}	Peak Output Current	Source		3.5		А
	(linear resistive operation)	Sink		3.5		А
IDC	Continuous Output Current	Source/Sink	200			mA
POWER SUPPI	LY		1	1		
I _S	Power Supply Current	Inputs = V _S +		1.3	3	mA
I _{VH}	Off Leakage at V _H V _H = 0V			4	10	μA
SWITCHING CI	HARACTERISTICS					
t _R	Rise Time	C _L = 2000pF		14.5		ns
t _F	Fall Time	C _L = 2000pF		15		ns
t _{RF}	t _R , t _F Mismatch	C _L = 2000pF		0.5		ns
t _{D-1}	Turn-Off Delay Time	C _L = 2000pF		9.5		ns
t _{D-2}	Turn-On Delay Time	C _L = 2000pF		10		ns
$t_{D\Delta}$	t _{D-1} -t _{D-2} Mismatch	C _L = 2000pF		0.5		ns
t _{D-3}	3-state Delay Enable			10		ns
t _{D-4}	3-state Delay Disable			10		ns

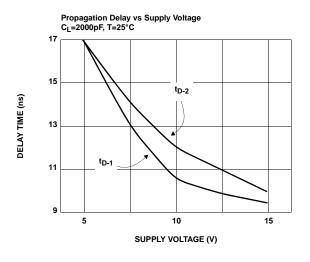

EL7155

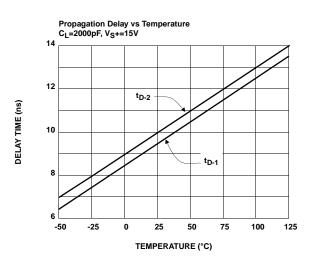

PARAMETER	DESCRIPTION CONDITION MIN		MIN	ТҮР	MAX	UNIT	
INPUT		ŀ	4	l.			
V _{IH}	Logic '1' Input Voltage		2.0			V	
I _{IH}	Logic '1' Input Current	V _{IH} = V _S +		0.1	10	μA	
V _{IL}	Logic '0' Input Voltage				0.8	V	
IIL	Logic '0' Input Current	V _{IL} = 0V		0.1	10	μA	
C _{IN}	Input Capacitance			3.5		pF	
R _{IN}	Input Resistance			50		MΩ	
OUTPUT				1			
R _{OVH}	ON Resistance V_H to OUT_H	I _{OUT} = -200mA		3.4	5	Ω	
R _{OVL}	ON Resistance V _L to OUT_L	I _{OUT} = +200mA		4	6	Ω	
IOUT	Output Leakage Current	$OE = 0V, OUT_H = V_L, OUT_L = V_S +$		0.1	10	μA	
I _{PK}	Peak Output Current (linear resistive operation)	Source		3.5		А	
		Sink		3.5		Α	
IDC	Continuous Output Current	Source/Sink	200			mA	
POWER SUPP	LY	· · ·	4			1	
IS	Power Supply Current	Inputs = V _S +		1	2.5	mA	
IVH	Off Leakage at V_H $V_H = 0V$			4	10	μA	
SWITCHING C	HARACTERISTICS	I	4				
t _R	Rise Time	C _L = 2000pF		17		ns	
t _F	Fall Time	C _L = 2000pF	C _L = 2000pF 17			ns	
$t_{RF\Delta}$	t _R , t _F Mismatch	C _L = 2000pF 0			ns		
t _{D-1}	Turn-Off Delay Time	C _L = 2000pF 11.5			ns		
t _{D-2}	Turn-On Delay Time	C _L = 2000pF		12		ns	
$t_{D\Delta}$	t _{D-1} -t _{D-2} Mismatch	C _L = 2000pF		0.5		ns	
t _{D-3}	3-state Delay Enable			11		ns	
t _{D-4}	3-state Delay Disable			11		ns	


Typical Performance Curves



Quiescent Supply Current vs Supply Voltage T=25°C

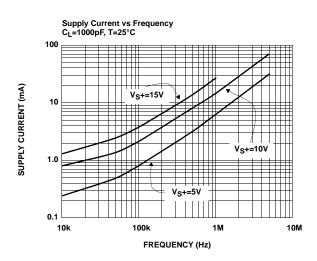

4


SUPPLY CURRENT (mA)

0

100

Typical Performance Curves (Continued)



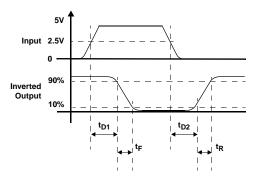
Supply Current vs Load Capacitance V_S+=V_H=15V, V_L=0V, T=25°C, f=20kHz

1000

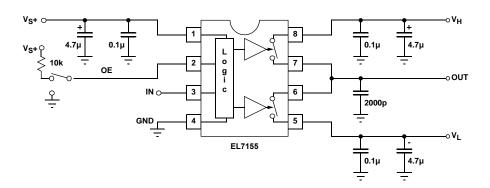
LOAD CAPACITANCE (pF)

5

10000

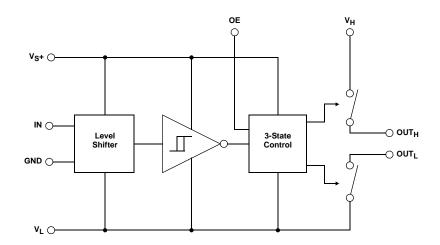

Truth Table

OE	IN	V _H to OUT _H	OUT _L to V _S -
0	0	Open	Open
0	1	Open	Open
1	0	Closed	Open
1	1	Open	Closed


Operating Voltage Range

PIN	MIN (V)	MAX (V)
VL	-5	0
V _S + - V _L	5	16.5
V _H - V _L	0	16.5
V _S + - V _H	0	16.5
V _S + - GND	5	16.5
3-State Output	VL	V _H

Timing Diagrams


Standard Test Configuration

Pin Descriptions

Pin	Name	Function	Equivalent Circuit
1	VS+	Positive Supply Voltage	
2	OE	Output Enable	
3	IN	Input	Reference Circuit 1
4	GND	Ground	
5	VL	Negative Supply Voltage	
6	OUTL	Lower Switch Output	OUTL OUTL Circuit 2
7	OUTH	Upper Switch Output	$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
8	VH	Upper Output Voltage	

Block Diagram

Applications Information

Product Description

The EL7155 is a high performance 40MHz pin driver. It contains two analog switches connecting V_H to OUT_H and V_L to OUT_L. Depending on the value of the IN pin, one of the two switches will be closed and the other switch open. An output enable (OE) is also supplied which opens both switches simultaneously.

Due to the topology of the EL7155, V_L should always be connected to a voltage equal to, or lower than GND. V_H can be connected to any voltage between V_L and the positive supply, V_S+.

The EL7155 is available in both the 8 Ld SO and the 8 Ld PDIP packages. The relevant package should be chosen depending on the calculated power dissipation.

3-state Operation

When the OE pin is low, the output is 3-state (floating.) The output voltage is the parasitic capacitance's voltage. It can be any voltage between V_H and V_L, depending on the previous state. At 3-state, the output voltage can be pushed to any voltage between V_H and V_L. The output voltage can't be pushed higher than V_H or lower than V_L since the body diode at the output stage will turn on.

Supply Voltage Range and Input Compatibility

The EL7155 is designed for operation on supplies from 5V to 15V (4.5V to 16.5V maximum). The table on page 6 shows the specifications for the relationship between the V_S+, V_H, V_L, and GND pins.

All input pins are compatible with both 3V and 5V CMOS signals. With a positive supply (V_S+) of 5V, the EL7155 is also compatible with TTL inputs.

Power Supply Bypassing

When using the EL7155, it is very important to use adequate power supply bypassing. The high switching currents developed by the EL7155 necessitate the use of a bypass capacitor between the V_S+ and GND pins. It is recommended that a 2.2 μ F tantalum capacitor be used in parallel with a 0.1 μ F low-inductance ceramic MLC capacitor. These should be placed as close to the supply pins as possible. It is also recommended that the V_H and V_L pins have some level of bypassing, especially if the EL7155 is driving highly capacitive loads.

Power Dissipation Calculation

When switching at high speeds, or driving heavy loads, the EL7155 drive capability is limited by the rise in die temperature brought about by internal power dissipation. For reliable operation die temperature must be kept below T_{JMAX} (125°C). It is necessary to calculate the power dissipation for a given application prior to selecting the package type.

Power dissipation may be calculated:

$$\mathsf{PD} = (\mathsf{V}_{\mathsf{S}} \times \mathsf{I}_{\mathsf{S}}) + (\mathsf{C}_{\mathsf{INT}} \times \mathsf{V}_{\mathsf{S}}^{2} \times \mathsf{f}) + (\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{OUT}}^{2} \times \mathsf{f})$$

where:

 ${\rm V}_{\rm S}$ is the total power supply to the EL7155 (from ${\rm V}_{\rm S}\text{+}$ to GND)

 V_{OUT} is the swing on the output (V_H - V_L)

 C_{L} is the load capacitance

C_{INT} is the internal load capacitance (100pF max)

 ${\sf I}_{\sf S}$ is the quiescent supply current (3mA max)

f is frequency

Having obtained the application's power dissipation, a maximum package thermal coefficient may be determined, to maintain the internal die temperature below T_{JMAX}:

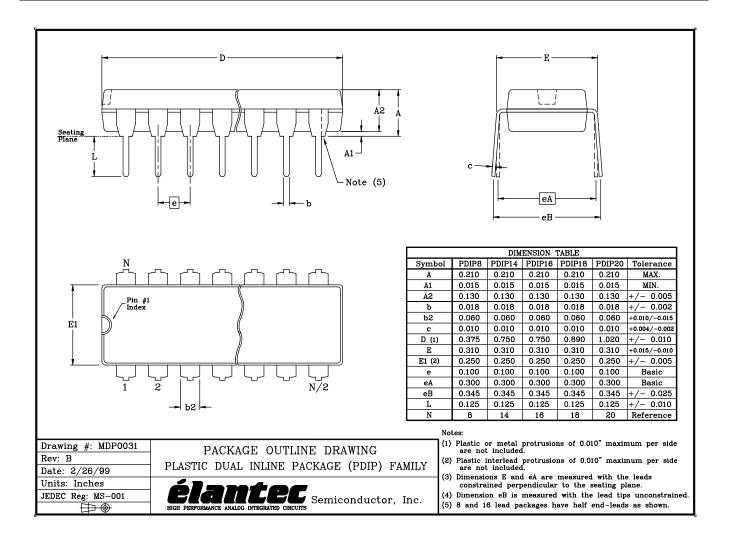
$$\theta_{JA} = \frac{(T_{JMAX} - T_{MAX})}{PD}$$

where:

T_{JMAX} is the maximum junction temperature (125°C)

T_{MAX} is the maximum operating temperature

PD is the power dissipation calculated above


 $\theta_{\mbox{JA}}$ thermal resistance on junction to ambient

 θ_{JA} is 160°C/W for the SO8 package and 100°C/W for the PDIP8 package when using a standard JEDEC JESD51-3 single-layer test board. If T_{JMAX} is greater than 125°C when calculated using the equation above, then one of the following actions must be taken:

Reduce θ_{JA} the system by designing more heat-sinking into the PCB (as compared to the standard JEDEC JESD51-3)

Use the PDIP8 instead of the SO8 package

De-rate the application either by reducing the switching frequency, the capacitive load, or the maximum operating (ambient) temperature (T_{MAX})

NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at http://www.intersil.com/design/packages/index.asp

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com