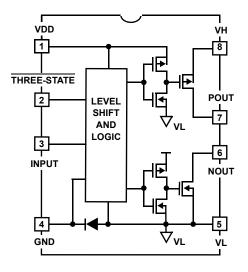


Data Sheet

September 7, 2010

FN7278.3


High Speed, Monolithic Pin Driver

The EL7154 three-state pin driver is particularly well suited for ATE and level shifting applications. The 4A peak drive capability, makes the EL7154 an excellent choice when driving high speed capacitive lines.

The P-Channel MOSFET is completely isolated from the power supply, providing a high degree of flexibility. Pin (7) can be grounded, and the output can be taken from pin (8) when a "source follower" output is desired. The N-Channel MOSFET has an isolated drain, but shares a common bus with pre-drivers and level shifter circuits. This is necessary to ensure that the N-Channel device can turn off effectively when V_L goes below GND. In some power-FET and IGBT applications, negative drive is desirable to insure effective turn-off. The EL7154 can be used in these applications by returning V_L to a moderate negative potential.

Pinout

EL7154 (8 LD PDIP, 8 LD SOIC) TOP VIEW

Truth Table

THREE-STATE	INPUT	POUT	N _{OUT}
0	0	Open	Open
0	1	Open	Open
1	0	HIGH	Open
1	1	Open	LOW

Manufactured under U.S. Patent Nos. 5,334,883, #5,341,047, #5,352,578, #5,352,389, #5,351,012, #5,374,898

Features

- · Comparatively low cost
- Three-State output
- 3V and 5V Input compatible
- Clocking speeds up to 10MHz
- 20ns Switching/delay time
- 4A Peak drive
- Isolated drains
- Low output impedance: 2.5Ω
- · Low quiescent current: 5mA
- Wide operating voltage: 4.5V to16V
- Isolated P-Channel device
- Separate ground and V_L pins
- Pb-free available (RoHS compliant)

Applications

- · Loaded circuit board testers
- Digital testers
- · Level shifting below GND
- IGBT drivers
- CCD drivers

Ordering Information

PART NUMBER	PART MARKING	PACKAGE	PKG. DWG. #
EL7154CN	EL7154CN	8 Ld PDIP	MDP0031
EL7154CNZ	EL7154CN Z	8 Ld PDIP* (Pb-free)	MDP0031
EL7154CS	7154CS	8 Ld SOIC	MDP0027
EL7154CS-T7**	7154CS	8 Ld SOIC	MDP0027
EL7154CS-T13**	7154CS	8 Ld SOIC	MDP0027
EL7154CSZ (See Note)	7154CSZ	8 Ld SOIC (Pb-free)	MDP0027
EL7154CSZ-T7** (See Note)	7154CSZ	8 Ld SOIC (Pb-free)	MDP0027
EL7154CSZ-T13** See Note)	7154CSZ	8 Ld SOIC (Pb-free)	MDP0027

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. **Add "-T" or "-TK" suffix for tape and reel. Please refer to TB347 for details on reel specifications.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Nominal Operating Voltage Range

PIN	MIN	МАХ
VL	-3	0
V_{DD} to V_{L}	5	15
V _H to V _L	2	15
V _{DD} to V _H	-0.5	15
V _{DD}	5	15

2

Supply (V_{DD} to V_L ; V_H to V_L , V_H to GND),

V+ to V _H
V _L to GND
Input Pins
Peak Output Current

Thermal Information

Storage Temperature Range65°C to +150°C Ambient Operating Temperature40°C to +85°C Operating Junction Temperature+125°C Power Dissipation
SOIC .570mW PDIP* .1050mW Pb-free reflow profile .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

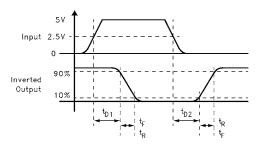
NOTE:

1. Limits established by characterization and are not production tested.

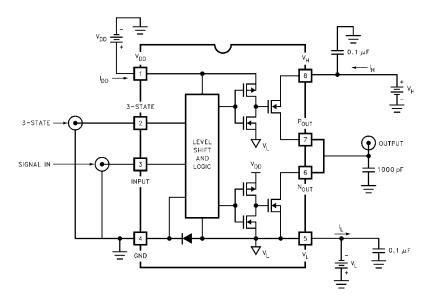
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT				L.	l	
VIH	Logic "1" Input Voltage		2.4			V
IIH	Logic "1" Input Current	V _{IH} = V _{DD}		0.1	10	μA
V _{IL}	Logic "0" Input Voltage				0.6	V
IIL	Logic "0" Input Current	V _{IL} = 0V		0.1	10	μA
V _{HVS}	Input Hysteresis			0.3		V
OUTPUT	- I	I			I	
R _{OH}	Pull-Up Resistance	I _{OUT} = -100mA		1.5	4	Ω
R _{OL}	Pull-Down Resistance	I _{OUT} = +100mA		2	4	Ω
IOUT	Output Leakage Current	V _{DD} /GND		0.2	10	μA
I _{PK}	Peak Output Current	Source/Sink		4.0		А
I _{DC} (Note 1)	Continuous Output Current	Source/Sink	200			mA
POWER SUPPLY	- I	I			I	
I _S	Power Supply Current	Inputs = V _{DD}		1	2.5	mA
V _S	Operating Voltage		4.5		16	V
IG	Current to GND (Pin 4)			1	10	μA
IH	Off Leakage at V _H	Pin 8 = 0V		1	10	μA

DC Electrical Specifications $T_A = +25^{\circ}C$, $V_{DD} = +12V$, $V_H = +12V$, $V_L = -3V$, unless otherwise specified.


AC Electrical Specifications $T_A = +25^{\circ}C$ unless otherwise specified.

PARAMETER	DESCRIPTION	$= 12V; V_{L} = -3V)$ $\frac{C_{L} = 100pF}{C_{L} = 2000pF}$ $\frac{C_{L} = 100pF}{C_{L} = 100pF}$ $\frac{C_{L} = 100pF}{C_{L} = 2000pF}$ 20	MAX	UNITS	
SWITCHING CHAF	ACTERISTICS ($V_{DD} = V_{H} = 12V; V_{L} = -3V$	()			
t _R (Note 1)	Rise Time	C _L = 100pF	4	25	ns
		C _L = 2000pF	20		ns
t _F (Note 1)	Fall Time	C _L = 100pF	4	25	ns
		C _L = 2000pF	20		ns
t _{D-1} (Note 1)	Turn-Off Delay Time	C _L = 2000pF	20	25	ns


AC Electrical Specifications $T_A = +25^{\circ}C$ unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
t _{D-2} (Note 1)	Turn-On Delay Time	C _L = 2000pF		10	25	ns
t _{D-1} (Note 1)	Three-State Delay				25	ns
t _{D-2} (Note 1)	Three-State Delay				25	ns

Timing Table

Standard Test Configuration

Typical Performance Curves

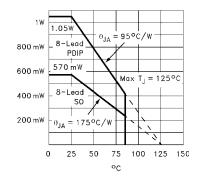


FIGURE 1. MAX POWER DERATING CURVES

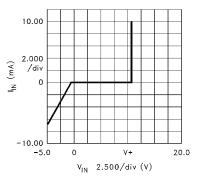


FIGURE 3. INPUT CURRENT vs VOLTAGE

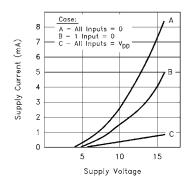


FIGURE 5. QUIESCENT SUPPLY CURRENT

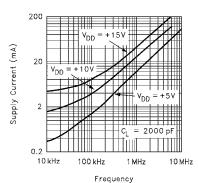


FIGURE 7. AVERAGE SUPPLY CURRENT vs VOLTAGE AND FREQUENCY

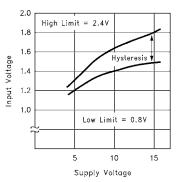


FIGURE 2. SWITCH THRESHOLD vs SUPPLY VOLTAGE

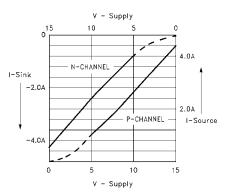


FIGURE 4. PEAK DRIVE vs SUPPLY VOLTAGE

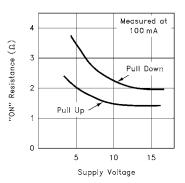


FIGURE 6. "ON" RESISTANCE vs SUPPLY VOLTAGE

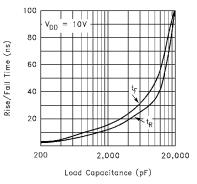
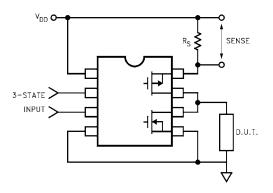
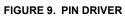




FIGURE 8. RISE/FALL TIME vs LOAD

Typical Applications

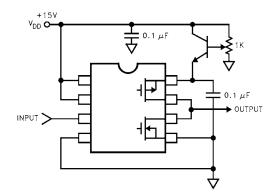
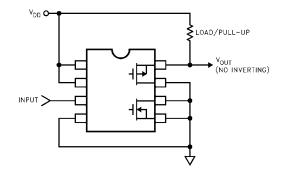



FIGURE 10. ADJUSTABLE AMPLITUDE PULSE GENERATOR

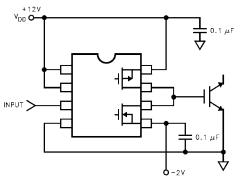


FIGURE 11. IGBT DRIVER WITH NEGATIVE SWING

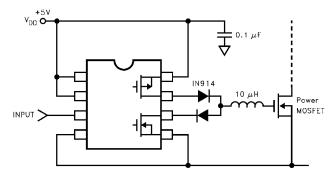
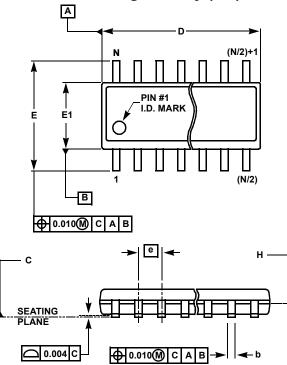
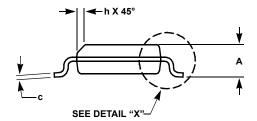
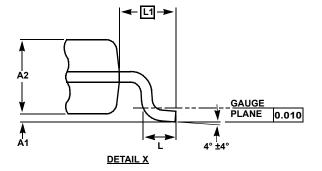





FIGURE 13. RESONANT GATE DRIVER

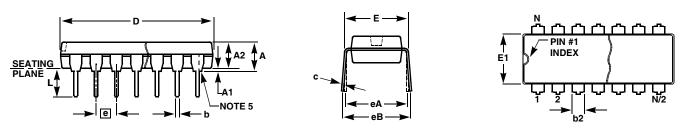
Small Outline Package Family (SO)

MDP0027

SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	SO-8	SO-14	SO16 (0.150")	SO16 (0.300") (SOL-16)	SO20 (SOL-20)	SO24 (SOL-24)	SO28 (SOL-28)	TOLERANCE	NOTES
А	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	±0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	±0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	±0.003	-
С	0.009	0.009	0.009	0.011	0.011	0.011	0.011	±0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	±0.004	1, 3
Е	0.236	0.236	0.236	0.406	0.406	0.406	0.406	±0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	±0.004	2, 3
е	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	±0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
Ν	8	14	16	16	20	24	28	Reference	-

Rev. M 2/07


NOTES:

- 1. Plastic or metal protrusions of 0.006" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions "D" and "E1" are measured at Datum Plane "H".

7

4. Dimensioning and tolerancing per ASME Y14.5M-1994

Plastic Dual-In-Line Packages (PDIP)

MDP0031 PLASTIC DUAL-IN-LINE PACKAGE

				INCHES			
NOTES	TOLERANCE	PDIP20	PDIP18	PDIP16	PDIP14	PDIP8	SYMBOL
	MAX	0.210	0.210	0.210	0.210	0.210	А
	MIN	0.015	0.015	0.015	0.015	0.015	A1
	±0.005	0.130	0.130	0.130	0.130	0.130	A2
	±0.002	0.018	0.018	0.018	0.018	0.018	b
	+0.010/-0.015	0.060	0.060	0.060	0.060	0.060	b2
	+0.004/-0.002	0.010	0.010	0.010	0.010	0.010	С
1	±0.010	1.020	0.890	0.750	0.750	0.375	D
	+0.015/-0.010	0.310	0.310	0.310	0.310	0.310	Е
2	±0.005	0.250	0.250	0.250	0.250	0.250	E1
	Basic	0.100	0.100	0.100	0.100	0.100	е
	Basic	0.300	0.300	0.300	0.300	0.300	eA
	±0.025	0.345	0.345	0.345	0.345	0.345	eB
	±0.010	0.125	0.125	0.125	0.125	0.125	L
	Reference	20	18	16	14	8	Ν

NOTES:

- 1. Plastic or metal protrusions of 0.010" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.
- 4. Dimension eB is measured with the lead tips unconstrained.
- 5. 8 and 16 lead packages have half end-leads as shown.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

