

4V Drive Pch MOSFET RSF010P05

Structure

Silicon P-channel MOSFET

Features

1) Low On-resistance.

- 2) Small high power package.
- 3) Low voltage drive.(4V)

Application

Switching

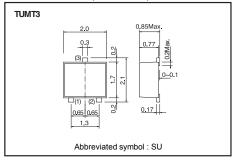
Packaging specifications

Туре	Package	Taping
	Code	TL
	Basic ordering unit (pieces)	3000
RSF010P0	5	0

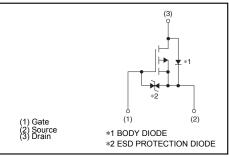
•Absolute maximum ratings (Ta = 25°C)

	• •	,		
Parar	neter	Symbol	Limits	Unit
Drain-source voltage		V _{DSS}	-45	V
Gate-source voltage		V _{GSS}	±20	V
Drain current	Continuous	I _D	±1	А
Dialit current	Pulsed	ا _{DP} *1	±4	А
Source current	Continuous	I _S	-0.6	А
(Body Diode)	Pulsed	I _{SP} *1	-4	А
Power dissipation		P _D *2	0.8	W
Channel temperature	9	Tch	150	°C
Range of storage ter	nperature	Tstg	-55 to +150	°C

*1 Pw \leq 10 μ s, Duty cycle \leq 1%


*2 Mounted on a ceramic board.

•Thermal resistance


Parameter	Symbol	Limits	Unit
Channel to Ambient	Rth (ch-a)*	156	°C / W

*Mounted on a ceramic board.

•Dimensions (Unit : mm)

Inner circuit

•Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	I _{GSS}	-	-	±10	μA	V _{GS} =±20V, V _{DS} =0V
Drain-source breakdown voltage	V _{(BR)DSS}	-45	-	-	V	I _D =–1mA, V _{GS} =0V
Zero gate voltage drain current	I _{DSS}	-	-	-1	μA	V _{DS} =–45V, V _{GS} =0V
Gate threshold voltage	$V_{GS(th)}$	-1.0	-	-2.5	V	V _{DS} =-10V, I _D =-1mA
		-	330	460		I _D =–1A, V _{GS} =–10V
Static drain-source on-state resistance	$R_{DS\;(on)}^{ *}$	-	450	630	mΩ	I _D =-0.5A, V _{GS} =-4.5V
		-	490	690		I _D =-0.5A, V _{GS} =-4V
Forward transfer admittance	۱ Y _{fs} ľ	1	-	-	S	I _D =-1A, V _{DS} =-10V
Input capacitance	C _{iss}	-	160	-	pF	V _{DS} =-10V
Output capacitance	C _{oss}	-	40	-	pF	V _{GS} =0V
Reverse transfer capacitance	C _{rss}	-	17	-	pF	f=1MHz
Turn-on delay time	t _{d(on)} *	-	6	-	ns	I _D =–0.5A, V _{DD} ≒–25V
Rise time	t _r *	-	4	-	ns	V _{GS} =–10V
Turn-off delay time	t _{d(off)} ∗	-	18	-	ns	$R_L = 50\Omega$
Fall time	t _f *	-	6	-	ns	R_{G} =10 Ω
Total gate charge	Q _g *	_	2.3	_	nC	I _D =–1A
Gate-source charge	Q _{gs} *	-	0.9	-	nC	V _{DD} ≒–25V
Gate-drain charge	Q _{gd} *	-	0.6	-	nC	V _{GS} =–5V

*Pulsed

•Body diode characteristics (Source-Drain) (Ta = 25°C)

··· , · · · · · · · · · · · · · · · · · · ·	(- /(-	,			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Forward Voltage	V _{SD} *	-	-	-1.2	V	I _s =–1A, V _{GS} =0V

*Pulsed

•Electrical characteristic curves (Ta=25°C)

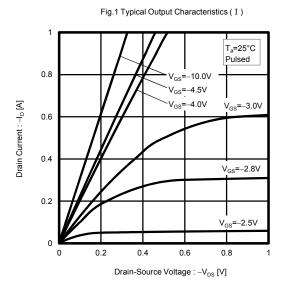


Fig.3 Static Drain-Source On-State Resistance vs. Drain Current

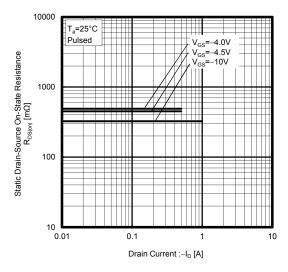
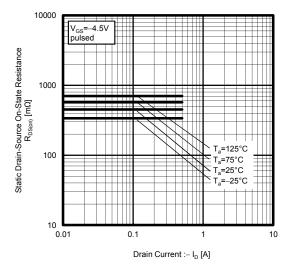



Fig.5 Static Drain-Source On-State Resistance vs. Drain Current

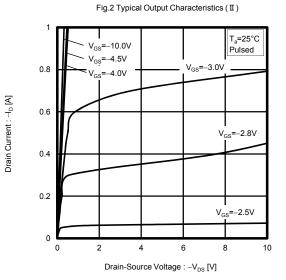


Fig.4 Static Drain-Source On-State Resistance vs. Drain Current

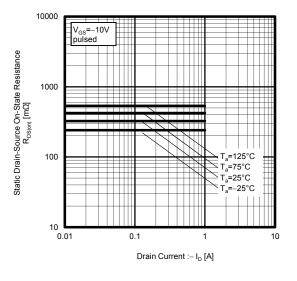
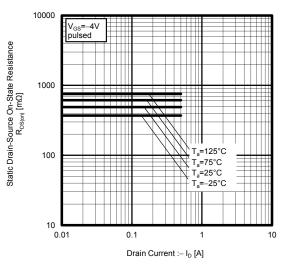



Fig.6 Static Drain-Source On-State Resistance vs. Drain Current

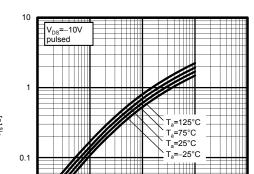
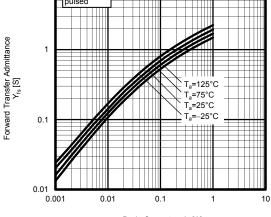
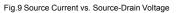
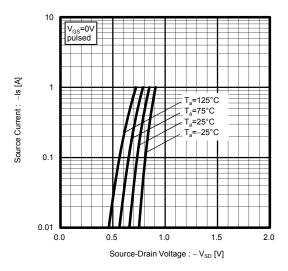





Fig.7 Forward Transfer Admittance vs. Drain Current

Drain Current : $-I_D [A]$

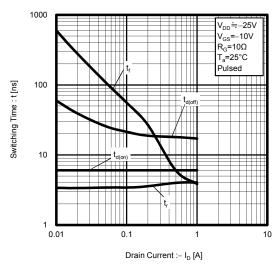


Fig.8 Typical Transfer Characteristics

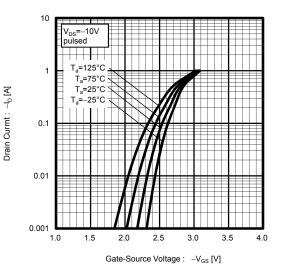


Fig.10 Static Drain-Source On-State Resistance vs. Gate-Source Voltage

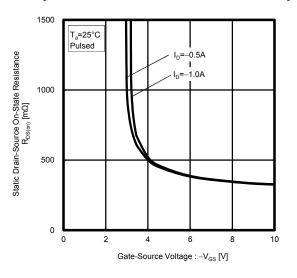
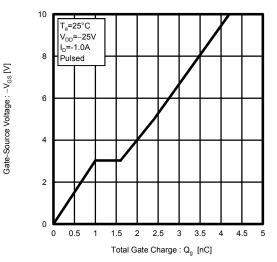



Fig.12 Dynamic Input Characteristics

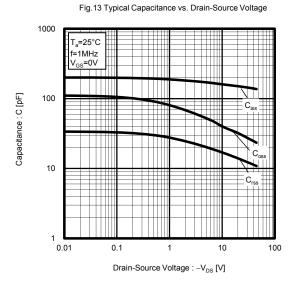


Fig.15 Normalized Transient Thermal Resistance v.s. Pulse Width

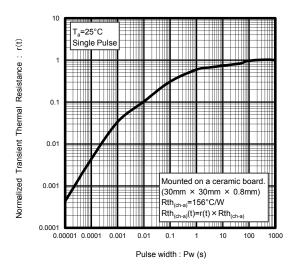
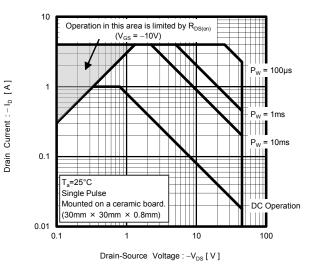



Fig.14 Maximum Safe Operating Area

Measurement circuits

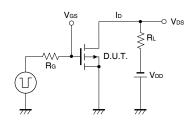


Fig.1-1 Switching Time Measurement Circuit

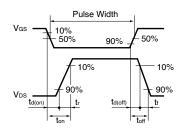


Fig.1-2 Switching Waveforms

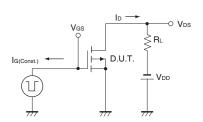


Fig.2-1 Gate Charge Measurement Circuit

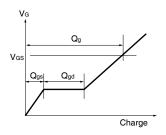


Fig.2-2 Gate Charge Waveform

	Notes
	or reproduction of this document, in part or in whole, is permitted without the OHM Co.,Ltd.
The content	specified herein is subject to change for improvement without notice.
"Products").	specified herein is for the purpose of introducing ROHM's products (hereinafte If you wish to use any such Product, please be sure to refer to the specifications e obtained from ROHM upon request.
illustrate the	application circuits, circuit constants and any other information contained herein standard usage and operations of the Products. The peripheral conditions mus account when designing circuits for mass production.
However, sh	vas taken in ensuring the accuracy of the information specified in this document nould you incur any damage arising from any inaccuracy or misprint of sucl ROHM shall bear no responsibility for such damage.
examples of implicitly, an other parties	al information specified herein is intended only to show the typical functions of and if application circuits for the Products. ROHM does not grant you, explicitly of y license to use or exercise intellectual property or other rights held by ROHM and s. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment c	is specified in this document are intended to be used with general-use electronion or devices (such as audio visual equipment, office-automation equipment, commu ices, electronic appliances and amusement devices).
The Product	s specified in this document are not designed to be radiation tolerant.
	I always makes efforts to enhance the quality and reliability of its Products, a fail or malfunction for a variety of reasons.
against the failure of any shall bear no	ure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the / Product, such as derating, redundancy, fire control and fail-safe designs. ROHM o responsibility whatsoever for your use of any Product outside of the prescribed in accordance with the instruction manual.
system whic may result in instrument, controller or of the Produ	is are not designed or manufactured to be used with any equipment, device of the requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medical transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- other safety device). ROHM shall bear no responsibility in any way for use of an ucts for the above special purposes. If a Product is intended to be used for an purpose, please contact a ROHM sales representative before purchasing.
be controlle	I to export or ship overseas any Product or technology specified herein that may d under the Foreign Exchange and the Foreign Trade Law, you will be required to nse or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/