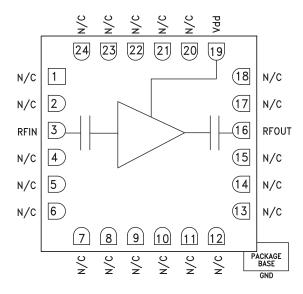


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz


Typical Applications

The HMC383LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- LO Driver for HMC Mixers
- Military & Space

11

Functional Diagram

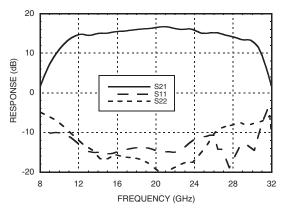
Saturated Output Power: +18 dBm

Features Gain: 15 dB

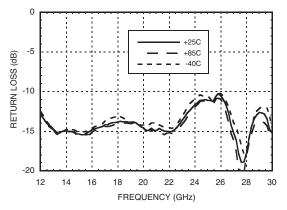
Output IP3: +25 dBm Single Positive Supply: +5V @ 100 mA 50 Ohm Matched Input/Output RoHS Compliant 4x4 mm Package

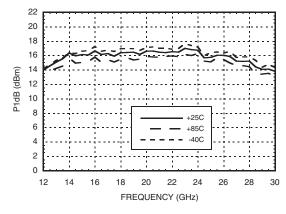
General Description

The HMC383LC4 is a general purpose GaAs PHEMT MMIC Driver Amplifier housed in a leadless RoHS compliant SMT package. The amplifier provides 15 dB of gain and +18 dBm of saturated power from a single +5V supply. Consistent gain and output power across the operating band make it possible to use a common driver/LO amplifier approach in multiple radio bands. The RF I/Os are DC blocked and matched to 50 Ohms for ease of use. The HMC383LC4 is housed in a RoHS compliant leadless 4x4 mm package allowing the use of surface mount manufacturing techniques.

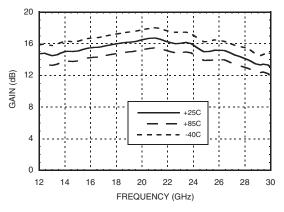

Electrical Specifications, $T_{A} = +25^{\circ} C$, Vdd = +5V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		12 - 16			16 -24			24 - 28			28 - 30		GHz
Gain	12	15		13	16		12	15		10	13		dB
Gain Variation Over Temperature		0.02	0.03		0.02	0.03		0.02	0.03		0.02	0.03	dB/ °C
Input Return Loss		14			14			11			13		dB
Output Return Loss		14			17			10			8		dB
Output Power for 1 dB Compression (P1dB)	12	15		13.5	16.5		13	16		12	15		dBm
Saturated Output Power (Psat)		17			18			17			16		dBm
Output Third Order Intercept (IP3)		24			25			25			23		dBm
Noise Figure		10.5			8			7.5			8		dB
Supply Current (Idd)	75	100	135	75	100	135	75	100	135	75	100	135	mA

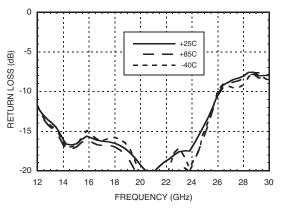



Broadband Gain & Return Loss

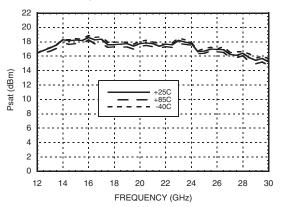
Input Return Loss vs. Temperature



P1dB vs. Temperature

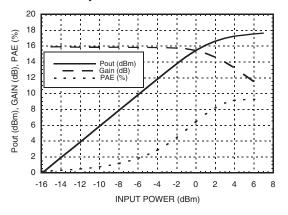


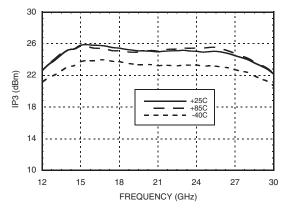
GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz


Gain vs. Temperature

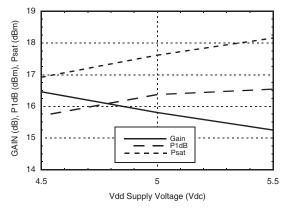
Output Return Loss vs. Temperature

Psat vs. Temperature

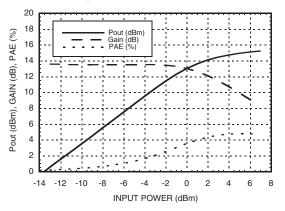


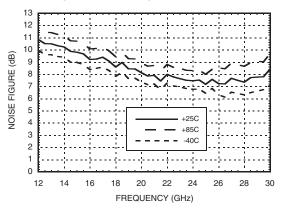


11

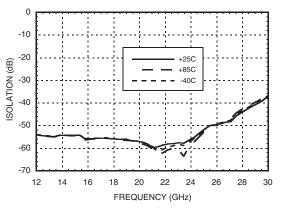

Power Compression @ 18 GHz

Output IP3 vs. Temperature


Gain & Power vs. Supply Voltage @ 18 GHz


GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz

HMC383LC4


Power Compression @ 30 GHz

Noise Figure vs. Temperature

Reverse Isolation vs. Temperature

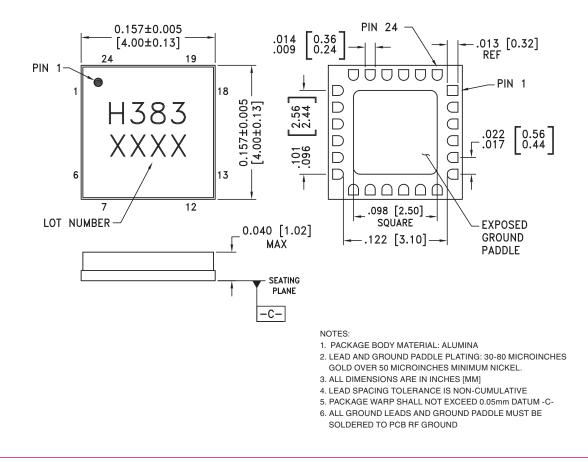
For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz

Absolute Maximum Ratings

	-
Drain Bias Voltage (Vdd)	+5.5 Vdc
RF Input Power (RFIN)(Vdd = +5Vdc)	+10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T= 85 °C) (derate 10 mW/°C above 85 °C)	0.92 W
Thermal Resistance (channel to ground paddle)	98 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


Outline Drawing

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)		
+4.5	99		
+5.0	100		
+5.5	101		

Note: Amplifier will operate over full voltage ranges shown above

BOTTOM VIEW

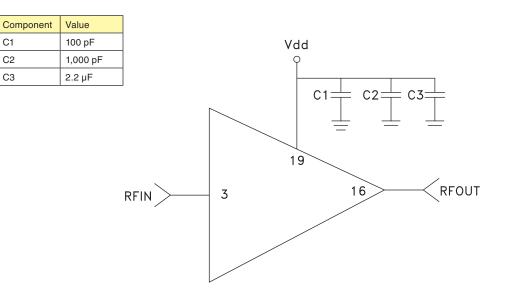
For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com

RoHS

11

GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz

Pin Descriptions

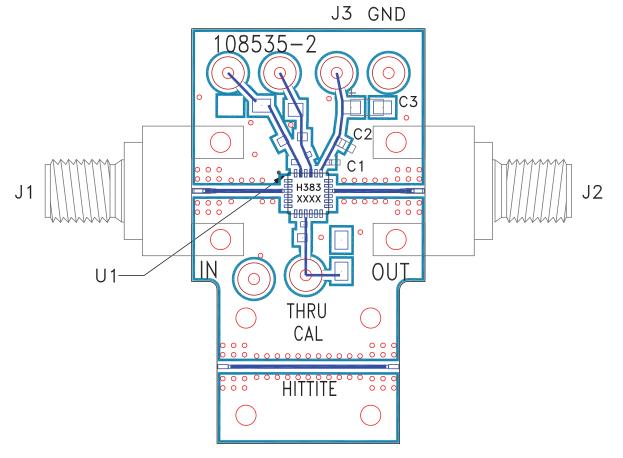

Pin Number	Function	Description	Interface Schematic
1, 2, 4-15, 17, 18, 20-24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance if using grounded coplanar wave guide transmission lines.	
3	RFIN	This pad is AC coupled and matched to 50 Ohms.	RFINO
16	RFOUT	This pad is AC coupled and matched to 50 Ohms.	
19	Vdd	Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are required.	⊖Vdd _
	GND	Package base has an exposed metal ground that must be connected to RF/DC ground. Vias under the device are required	

Application Circuit

C1

C2

СЗ



GaAs PHEMT MMIC MEDIUM POWER AMPLIFIER, 12 - 30 GHz

Evaluation PCB

List of Materials for Evaluation PCB 122198 [1]

Item	Description			
J1, J2	2.92 mm PCB mount K-connector			
J3, J4	DC Pin			
C1	100 pF capacitor, 0402 pkg.			
C2	1,000 pF Capacitor, 0603 pkg.			
C3	2.2µF Capacitor, Tantalum			
U1	HMC383LC4 Amplifier			
PCB [2]	108535 Evaluation PCB			

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350.

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.