

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Typical Applications

The HMC547LC3 is ideal for:

- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military Radios, Radar, & ECM
- Test Instrumentation

Functional Diagram

Features

High Isolation: 45 dB @ 10 GHz 40 dB @ 20 GHz

Low Insertion Loss: 1.6 dB @ 10 GHz 1.9 dB @ 20 GHz

Fast Switching: 6 ns

Non-Reflective Design

16 Lead Ceramic 3x3 mm SMT Package: 9mm²

General Description

The HMC547LC3 is a general purpose broadband high isolation non-reflective GaAs MESFET SPDT switch in a ceramic 3x3 mm leadless surface mount package. Covering DC to 28.0 GHz, the switch offers over 40 dB isolation and less than 2 dB insertion loss at midband. The wide bandwidth, fast switching, and compact size make this absorbtive SPDT ideal for miliitary EW/ECM and test equipment applications. The switch operates using complementary negative control voltage logic lines of -5/0V and requires no bias supply.

Electrical Specifications, $T_A = +25^{\circ}$ C, With 0/-5V Control, 50 Ohm System

Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 10.0 GHz 10.0 - 20.0 GHz 20.0 - 28.0 GHz		1.6 1.9 2.4	2.2 2.5 3.0	dB dB dB
Isolation	DC - 10.0 GHz 10.0 - 20.0 GHz 20.0 - 28.0 GHz	40 34 30	45 40 34		dB dB dB
Return Loss "On State"	DC - 28.0 GHz		17		dB
Return Loss RF1, RF2 "Off State"	DC - 10.0 GHz 10.0 - 20.0 GHz 20.0 - 28.0 GHz		25 15 8		dB dB dB
Input Power for 1 dB Compression	DC - 0.5 GHz 0.5 - 28.0 GHz	20	16 23		dBm
Input Third Order Intercept (Two-Tone Input Power= +7 dBm Each Tone)	DC - 0.5 GHz 0.5 - 28.0 GHz		26 46		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 28.0 GHz		3 6		ns ns

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Insertion Loss

Isolation Between Ports RFC and RF1/RF2

Return Loss

Isolation Between Ports RF1 and RF2

Input Third Order Intercept Point

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Absolute Maximum Ratings

PE Input Power (A B = 0)// 5)/)	125 dBm
$\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} = $	+25 UBIII
Control Voltage Range (A & B)	+5.0V to -7.5V
Hot Switch Power Level (A,B = 0V/-5V)	+22 dBm
Channel Temperature	150 °C
Continuous Pdiss (T=85°C) (derate 3.3 mW/°C above 85°C) (Insertion Loss Path)	0.215 W
Thermal Resistance (Insertion Loss Path)	302 °C/W
Continuous Pdiss (T=85°C) (derate 5.6 mW/°C above 85°C) (Terminated Path)	0.363 W
Thermal Resistance (Terminated Path)	179 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Control Voltages

State	Bias Condition	
Low	0 to -0.5V @ 10 uA Max.	
High	-5V @ 3 uA Typ. to -7V @ 10 uA Typ. (± 0.5V)	

Truth Table

Control Input		Signal Path State		
A	В	RFC to RF1	RFC to RF2	
High	Low	On	Off	
Low	High	Off	On	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Outline Drawing

- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC547LC3	Alumina, White	Gold over Nickel	MSL1 ^[1]	H547 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5, 9, 12, 16 N/C		This pin should be connected to PCB RF ground to maximize isolation	
2, 4, 6, 8, 13, 15	GND	Package bottom has exposed metal paddle that must also be connected to PCB RF ground.	
3, 7, 14	RFC, RF1, RF2 This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V.		
10	В	See truth table and control voltage table.	
11	A	See truth table and control voltage table.	Ţ

GaAs MMIC SPDT NON-REFLECTIVE SWITCH, DC - 28.0 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC547LC3 [1]

Item	Description	
J1 - J3	PCB Mount SRI SMA Connector	
J4 - J6	DC Pin	
R1 - R2	100 Ohm Resistor, 0603 Pkg.	
U1	HMC547LC3 SPDT Switch	
PCB ^[2]	600-00005-00-1 Evaluation PCB	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

Description I he circuit board used in the generated with proper RF circuit board used in the circuit board used used in the circuit b

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.