

Typical Applications

The HMC729LC3C is ideal for:

- Serial Data Transmission up to 26 Gbps
- High Speed Frequency Divider (up to 26 GHz)
- · Broadband Test & Measurement
- · RF ATE Applications

_ .. . _.

Features

Supports Clock Frequencies up to 26 GHz Differential or Single-Ended Operation Fast Rise and Fall Times: 18 / 17 ps Low Power Consumption: 270 mW typ.

Propagation Delay: 95 ps Single Supply: -3.3 V

16 Lead Ceramic 3x3 mm SMT Package: 9 mm²

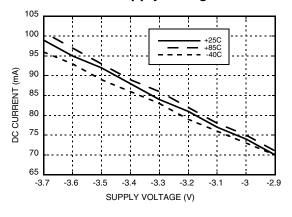
General Description

The HMC729LC3C is a T-Type Flip-Flop w/Reset designed to support clock frequencies as high as 26 GHz. During normal operation, with the reset pin not asserted, the output toggles from its prior state on the positive edge of the clock. This results in a divide-by-two function of the clock input. Asserting the reset pin forces the Q output low regardless of the clock edge state (asynchronous reset assertion). Reversing the clock inputs allows for negative-edge triggered applications.

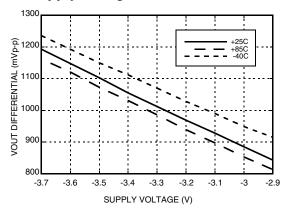
All differential inputs to the HMC729LC3C are CML and terminated on-chip with 50 Ohms to the positive supply, GND, and may be DC or AC coupled. The differential CMI outputs are source terminated to to 50 Ohms and may also be AC or DC coupled. Outputs can be connected directly to a 50 Ohm ground-terminated system or drive devices with CML logic input. The HMC729LC3C operates from a single -3.3 V supply and is available in ROHS-compliant 3x3 mm SMT package.

Electrical Specifications, T_A = +25 °C, Vee = -3.3 V

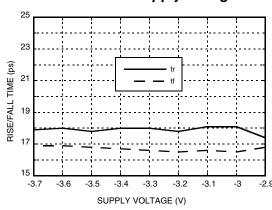
Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	V
Power Supply Current			82		mA
Maximum Clock Rate			26		GHz
Input Voltage Range		-1.5		0.5	V
Input Differential Range		0.1		2.0	Vp-p
Input Return Loss	Frequency <13 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVp-p
	Differential, peak-to-peak		1100		mVp-p
Output High Voltage			-10		mV
Output Low Voltage			-560		mV

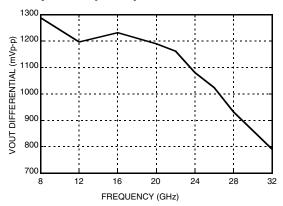

HS V

26 GHz, T-FLIP-FLOP w/ RESET


Electrical Specifications (continued)

Parameter	Conditions	Min.	Тур.	Max	Units
Output Rise / Fall Time	Differential, 20% - 80%		18 / 17		ps
Output Return Loss	Frequency <13 GHz		10		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak		2		ps, p-p
Propagation Delay Clock to Q, td			95		ps
Propagation Delay Reset to Q, tdr			125		ps

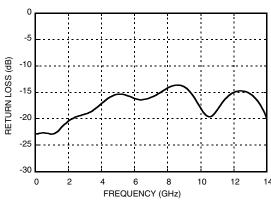

DC Current vs. Supply Voltage [1]


Output Differential Voltage vs. Supply Voltage [2]

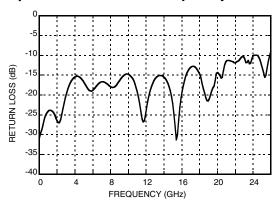
Rise / Fall Time vs. Supply Voltage [2]

Output Differential Voltage vs. Input Frequency [3]

[1] Data rate = 13 Gbps

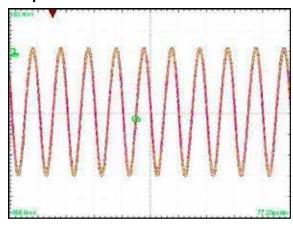

[2] Frequency = 24 GHz

[3] Vee - -3.3 V



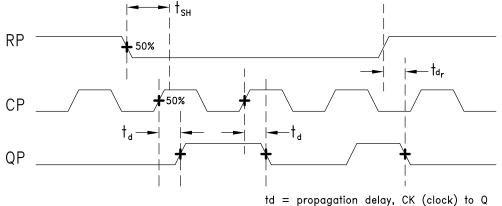
Output Return Loss vs. Frequency

Input Return Loss vs. Frequency



v05.1010

26 GHz, T-FLIP-FLOP w/ RESET

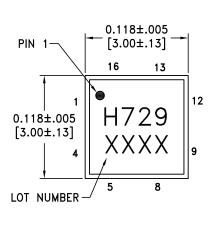

Output Waveform

[1] Test Conditions:

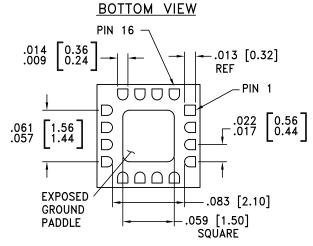
Waveform generated with a CW signal source input at 26 GHz. Diagram data presented on a Tektronix CSA 8000.

Timing Diagram

tdr = propagation delay, R (reset) to Q.



Absolute Maximum Ratings

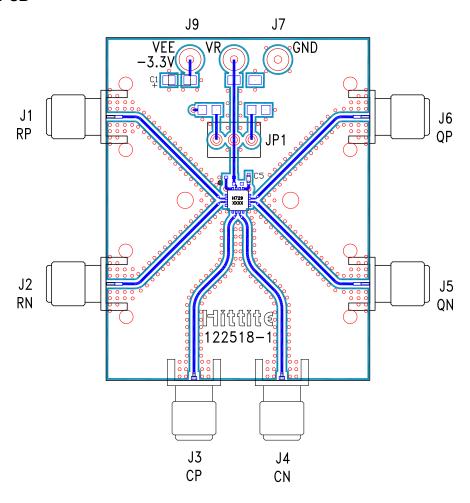

Power Supply Voltage (Vee)	-3.75 V to +0.5 V
Input Signals	-2 V to +0.5 V
Output Signals	-1.5 V to +1 V
Continuous Pdiss (T = 85 °C) (derate 17 mW/°C above 85 °C)	0.68 W
Thermal Resistance (R _{th j-p}) Worst case junction to package paddle	59 °C/W
Maximum Junction Temperature	125 °C
Storage Temperature	-65 °C to +150 °C
Operating Temperature	-40 °C to +85 °C
ESD Sensitivity (HBM)	Class 1C

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
 - 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO GND.

Pin Descriptions [1]


Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	⊖ GND =
2, 3	RP, RN	Differential Reset Inputs: Current Mode Logic (CML) referenced to positive supply.	GND GND GND RN
6, 7	CP, CN	Differential Clock Inputs: Current Mode Logic (CML) referenced to positive supply.	GND GND GND
10, 11	QN, QP	Differential Clock Outputs: Current Mode Logic (CML) referenced to positive supply.	GND O GND O QN
13, 16	Vee	Negative Supply	
14, Package Base	GND	Supply Ground	GND =
15	N/C	No Connection	

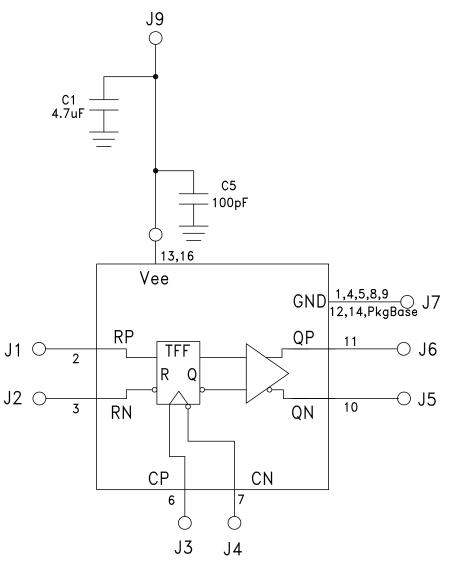
^[1] Contact HMC for alternate pinouts

Evaluation PCB

List of Materials for Evaluation PCB 123576 [1]

Item	Description	
J3, J4	PCB Mount 2.92mm RF Connectors	
J1, J2, J5, J6	PCB Mount SMA RF Connectors	
J7 - J9	DC Pin	
C1	4.7 μF Capacitor, Tantalum	
C5	100 pF Capacitor, 0402 Pkg.	
U1	HMC729LC3C High Speed Logic, T Type Flip-Flop	
PCB [2]	122518 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed packaged base should be connected to GND. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 4350

Application Circuit

