
RoHS EARTH FRIENDL

Typical Applications

The HMC896LP4E is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

Features

Fast Tuning Response

Excellent Wideband Rejection

Tunable low side/high side rejection "notch"

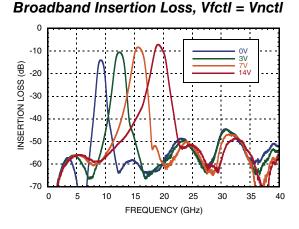
Single Chip Replacement for Mechanically Tuned Designs

24 Lead 4x4 mm SMT Package

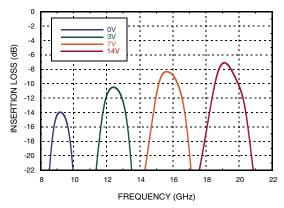
General Description

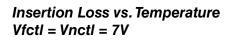
The HMC896LP4E is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 9%. The 20 dB filter bandwidth is approximately 22%. The center frequency can be varied between 10 and 18 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC896LP4E has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

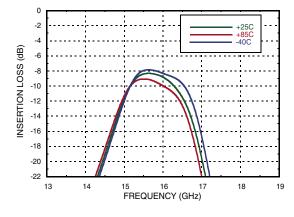
Electrical Specifications, $T_A = +25$ °C, Vfctl = Vnctl Unless Otherwise Stated

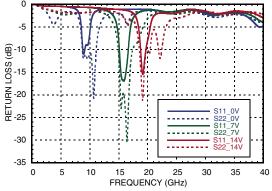

Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	10		18	GHz
3 dB Bandwidth		9		%
Low Side Rejection Frequency (Rejection >20 dB)		0.89 *F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.10 *F _{center}		GHz
Low Side Sub-Harmonic Rejection (Rejection >40 dB)		0.75 *F _{center}		GHz
High Side Sub-Harmonic Rejection (Rejection >40 dB)		1.18 *F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		>40		GHz
Insertion Loss		9		dB
Return Loss (2 dB bandwidth)		11		dB
Input IP3 (Pin = 0 to +15 dBm)		26		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 0V)		8		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 1V)		12		dBm
Frequency Control Voltage (Vfctl)	0		14	V
Source/Sink Current (Ifctl)			±1	mA
Low Side/High Side Rejection Control Voltage (Vnctl)	0		14	V
Source/Sink current (Inctl)			±1	mA
Residual Phase Noise [1] (100 kHz Offset)		-158		dBc/Hz
F _{center} Drift Rate		-1.5		MHz/°C
Tuning Speed, Phase Settling to within 10° [2]		< 200		ns

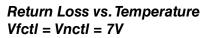
Optimum residual phase noise performance requires the use of a low noise driver circuit.
Tuning speed includes 40 ns tuning voltage ramp from driver.

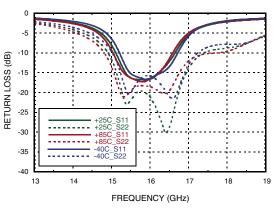





FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

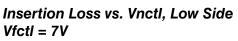

Insertion Loss, Vfctl = Vnctl

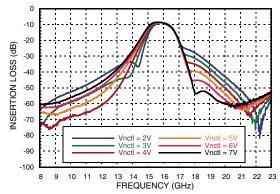




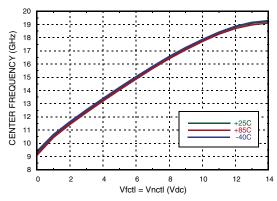
Broadband Return Loss, Vfctl = Vnctl

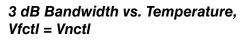
-5 RETURN LOSS (dB) -10 -15 -20 _0V _0V _7V _7V S11 -25 S22_ S11_ -30 S11 14\ 14\ -35 22 8 10 12 14 16 18 20 FREQUENCY (GHz)

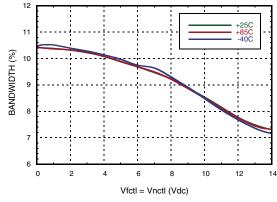


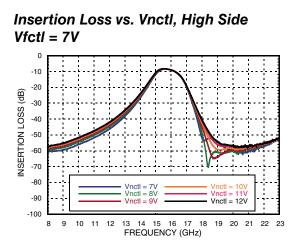

Return Loss, Vfctl = Vnctl

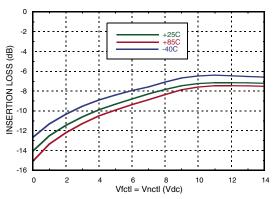
For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

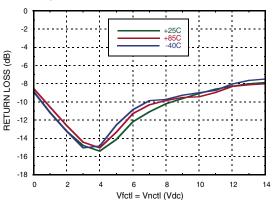




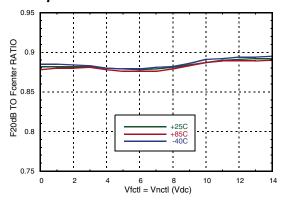


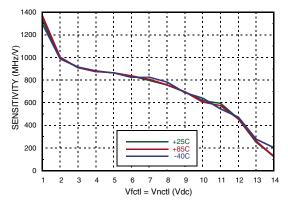

Center Frequency vs. Temperature, Vfctl = Vnctl

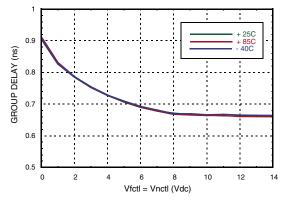


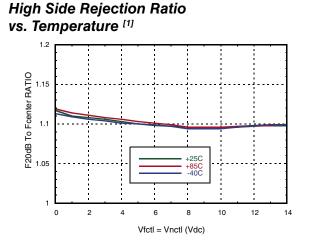

FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

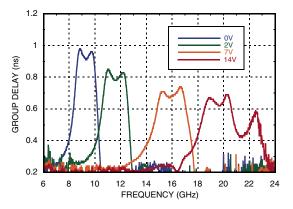
Insertion Loss vs. Temperature, Vfctl = Vnctl

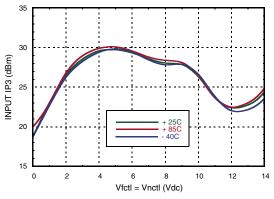

Input Return Loss in a 2 dB Bandwidth vs. Temperature, Vfctl = Vnctl



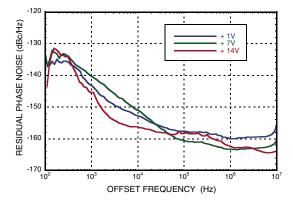

Low Side Rejection Ratio vs. Temperature [1]

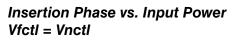

Tuning Sensitivity vs. Temperature

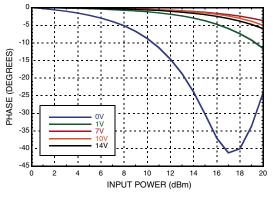

Group Delay vs. Fcenter vs. Temperature



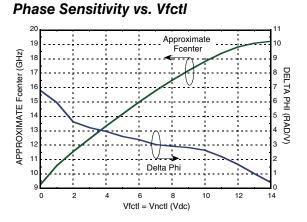
Group Delay vs. Frequency



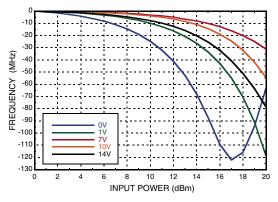

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to fcenter



Residual Phase Noise, Vfctl = Vnctl


Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15V	
Notch Control Voltage (Vnctl)	-0.5 to +15V	
RF Power Input	27 dBm	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1A	



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

Fcenter vs. Input Power Vfctl = Vnctl

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C
Nominal Junction Temperature (T= 85 °C and Pin = 27 dBm)	103 °C
Operating Temperature	-40 to +85 °C



FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

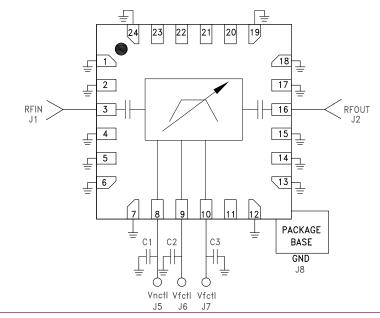
Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC896LP4E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 ^[2]	<u>H896</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

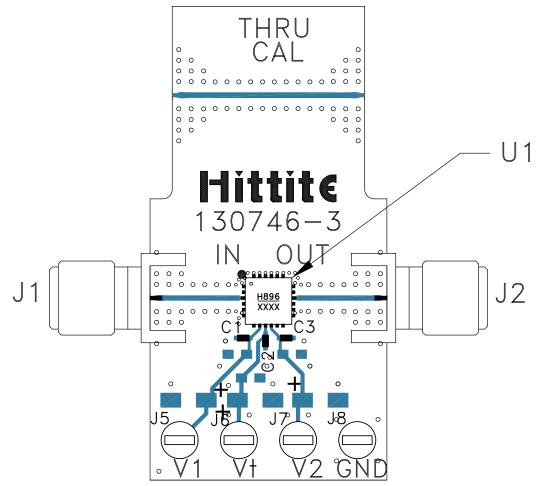


FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4 - 7, 12 - 15, 17 - 19, 24	GND	These pins and exposed paddle must be connected to RF/DC ground.	
11, 20 - 23	NC	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally	
3	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ² pF O
8	Vnctl	Low side/high side notch control voltage.	Vnctl 1.5 Ko \downarrow 4 pF \downarrow 1.2 pF
9	Vfctl	Center frequency control voltage.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	Vfctl	Center frequency control voltage.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16	RFOUT	This pin is AC coupled and matched to 50 Ohms.	2 pF RFOUT

Application Circuit



FILTER - TUNABLE, BAND PASS SMT 10 - 18 GHz

Evaluation PCB

List of Materials for Evaluation PCB 131085^[1]

Item	Description	
J1, J2	Connector, 2.9mm, Female	
J5,J6,J7, J8	DC Pin	
C1, C2, C3	100 pF Capacitor, 0402 Pkg.	
U1	HMC896LP4E Filter - Tunable	
PCB [2]	130746 Evaluation PCB	

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Arlon 25FR or Rogers 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohms impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.