

Typical Applications

The HMC897 is ideal for:

- Test & Measurement Equipment
- Military RADAR & EW/ECM
- SATCOM & Space
- Industrial & Medical Equipment

Functional Diagram

Features

Fast Tuning Response

Excellent Wideband Rejection

Single Chip Replacement For Mechanically Tuned Designs

Small Size: 2.48 x 1.16 x 0.10 mm

General Description

The HMC897 is a MMIC band pass filter which features a user selectable passband frequency. The 3 dB filter bandwidth is approximately 18%. The 20 dB filter bandwidth is approximately 35%. The center frequency can be varied between 9 and 19 GHz by applying an analog tune voltage between 0 and 14V. This tunable filter can be used as a much smaller alternative to physically large switched filter banks and cavity tuned filters. The HMC897 has excellent microphonics due to the monolithic design, and provides a dynamically adjustable solution in advanced communications applications.

Electrical Specifications, $T_{\Delta} = +25$ °C

Parameter	Min.	Тур.	Max.	Units
F _{center} Tuning Range	9		19	GHz
3 dB Bandwidth		18		%
Low Side Rejection Frequency (Rejection >20 dB)		0.81 *F _{center}		GHz
High Side Rejection Frequency (Rejection >20 dB)		1.17 *F _{center}		GHz
Low Side Sub-Harmonic Rejection (Rejection >40 dB)		0.58 *F _{center}		GHz
High Side Sub-Harmonic Rejection (Rejection >40 dB)		1.23 *F _{center}		GHz
Re-entry Frequency (Rejection <30 dB)		>40		GHz
Insertion Loss		5.5		dB
Return Loss (2 dB Bandwidth)		9.5		dB
Input IP3 (Pin = 0 to +20 dBm)		30		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl = 0V)		10		dBm
Input Power @ 5° Shift In Insertion Phase (Vfctl > = 1V)		15		dBm
Frequency Control Voltage (V _{fctl})	0		14	V
Source/Sink Current (I _{fctl})			±1	mA
Residual Phase Noise [1] (100 kHz Offset)		-160		dBc/Hz
F _{center} Drift Rate		-1.6		MHz/°C
Tuning Speed, Phase Settling to within 10° [2]		< 200		ns

^[1] Optimum residual phase noise performance requires the use of a low noise driver circuit.

^[2] Tuning speed includes 40 ns tuning voltage ramp from driver.

Broadband Insertion Loss vs. Vfctl

Broadband Return Loss vs. Vfctl

Insertion Loss vs. Vfctl

Return Loss vs. Vfctl

Insertion Loss vs. Temperature, Vfctl = 7V

Return Loss vs. Temperature, Vfctl = 7V

Center Frequency vs. Temperature

Insertion Loss vs. Temperature

3 dB Bandwidth vs. Temperature

Maximum Return Loss in a 2 dB Bandwidth vs Temperature

Low Side Rejection Ratio vs. Temperature [1]

High Side Rejection Ratio vs.

[1] Rejection ratio is defined as the ratio of the frequency at which the relative insertion loss is 20 dB to the insertion loss at fcenter.

Tuning Sensitivity vs. Vfctl

Group Delay vs. Frequency

Group Delay vs. Fcenter

Input IP3 vs. Temperature

Residual Phase Noise

Phase Sensitivity vs. Vfctl

Phase Shift vs. Pin

Frequency Shift vs. Pin

Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15V	
RF Power Input	27 dBm	
Storage Temperature	-65 to +150 °C	
ESD Sensitivity (HBM)	Class 1 A	

Reliability Information

Junction Temperature to Maintain 1 Million Hour MTTF	150 °C	
Nominal Junction Temperature (T= 85 °C and Pin = 27 dBm)	108 °C	
Operating Temperature	-55 to +85 °C	

Outline Drawing

Die Packaging Information [1]

Standard	Alternate
WP-9	[2]

[1] Refer to "Waffle-Pak & Gel-Pak" section for die packaging dimensions. [2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES

- 1. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 2. DIE THICKNESS IS .004".
- 3. TYPICAL BOND PAD IS .004" SQUARE..
- 5. BOND PAD METALIZATION: GOLD
- 6. BACKSIDE METALIZATION: GOLD
- 7. BACKSIDE METAL IS GROUND
- 7. CONNECTION NOT REQUIRED FOR UNLABELED PADS.

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	GND	
2	RFIN	This pad is AC coupled and matched to 50 Ohms.	RFIN 3.5pF	
5	RFOUT	This pad is AC coupled and matched to 50 Ohms.	3.5pF RFOUT	
7, 8, 9	Vfctl	Center frequency control voltage. All pads are interconnected on the die. Only one bond on any of these pads is required for center frequency control.	Vfctl 40 0.4nH 1000	

Assembly Diagram

- NOTES:
 1. The HMC899 I/O's are inherently capacitive in order to accommodate bond wire connections.
- 2. 1 mill diameter bond wires can be used.
 3. Ideally, double bond wires 20 mils long, or a single bond wire 12 mils long should be used (approx.140 pH).
 4. It is recommended that on the opposite side of the bond wires, an additional 20-50 fF fringe capacitance be present.

NOTES: