


### **K Band Low Noise Amplifier**



#### **Preliminary Measured Data** Bias Conditions: Vd = 3.5 V, Id = 60 mA 30 Gain Gain & Return Loss (dB) 20 10 0 -10 -20 OR -30 -40 15 17 19 21 23 25 27 29 31 33 35 Frequency (GHz) 3.0 2.5 **Noise Figure** 2.0 1.5 1.0 0.5 0.0 20 21 22 23 24 25 26 27 Frequency (GHz)

#### **Key Features**

- Typical Frequency Range: 20 27 GHz
- 21 dB Nominal Gain
- 2.2 dB Nominal Noise Figure
- 12 dBm Nominal P1dB
- Bias 3.5 V, 60 mA
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 1.2 x 0.8 x 0.1 mm (0.047 x 0.031 x 0.004) in

### **Primary Applications**

- Point-to-Point Radio
- Point-to-MultiPoint Radio
- LMDS

Datasheet subject to change without notice



### TABLE I MAXIMUM RATINGS <u>1</u>/

| SYMBOL           | PARAMETER                         | VALUE         | NOTES                 |
|------------------|-----------------------------------|---------------|-----------------------|
| Vd               | Drain Voltage                     | 5 V           | <u>2/</u>             |
| Vg               | Gate Voltage Range                | -1 TO +0.5 V  |                       |
| ld               | Drain Current                     | 190 mA        | <u>2</u> / <u>3</u> / |
| Ig               | Gate Current                      | 6 mA          | <u>3</u> /            |
| P <sub>IN</sub>  | Input Continuous Wave Power       | 12 dBm        |                       |
| P <sub>D</sub>   | Power Dissipation                 | 0.95 W        | <u>2/ 4</u> /         |
| Т <sub>сн</sub>  | Operating Channel Temperature     | 200°C         | <u>5</u> / <u>6</u> / |
|                  | Mounting Temperature (30 Seconds) | 320 °C        |                       |
| T <sub>STG</sub> | Storage Temperature               | -65 to 150 °C |                       |

- <u>1</u>/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P<sub>D</sub>.
- 3/ Total current for the entire MMIC.
- 4/ When operated at this bias condition with a base plate temperature of 70 °C, the median life is reduced to 1.9E3 hrs.
- 5/ Junction operating temperature will directly affect the device median time to failure (Tm). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 6/ These ratings apply to each individual FET.



# TABLE IIDC PROBE TESTS(Ta = 25 °C Nominal)

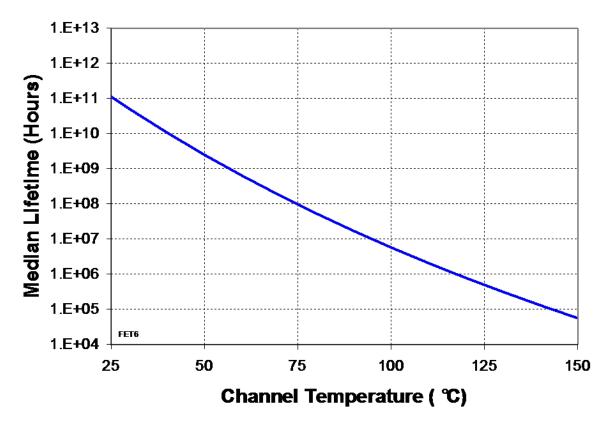
| SYMBOL          | PARAMETER         | MINIMUM | MAXIMUM | VALUE |
|-----------------|-------------------|---------|---------|-------|
| V <sub>P3</sub> | Pinch-off Voltage | -1.0    | -0.1    | V     |

Q3 is 300 um FET

#### TABLE III ELECTRICAL CHARACTERISTICS

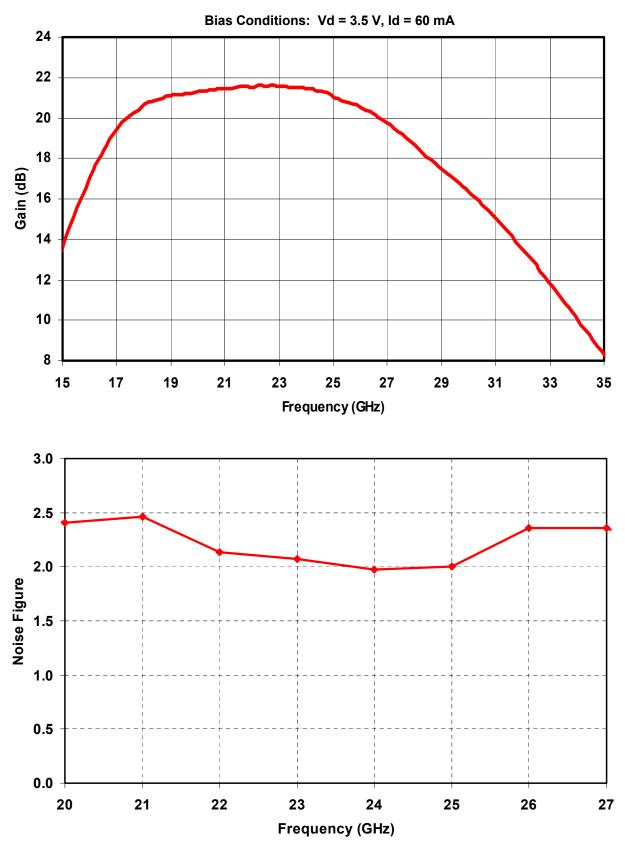
#### (Ta = 25 °C Nominal)

| PARAMETER                                  | TYPICAL   | UNITS |
|--------------------------------------------|-----------|-------|
| Drain Voltage, Vd                          | 3.5       | V     |
| Drain Current, Id                          | 60        | mA    |
| Gate Voltage, Vg                           | -0.5 to 0 | V     |
| Small Signal Gain, S21                     | 21        | dB    |
| Input Return Loss, S11                     | 15        | dB    |
| Output Return Loss, S22                    | 11        | dB    |
| Noise Figure, NF                           | 2.2       | dB    |
| Output Power @ 1 dB Compression Gain, P1dB | 12        | dBm   |



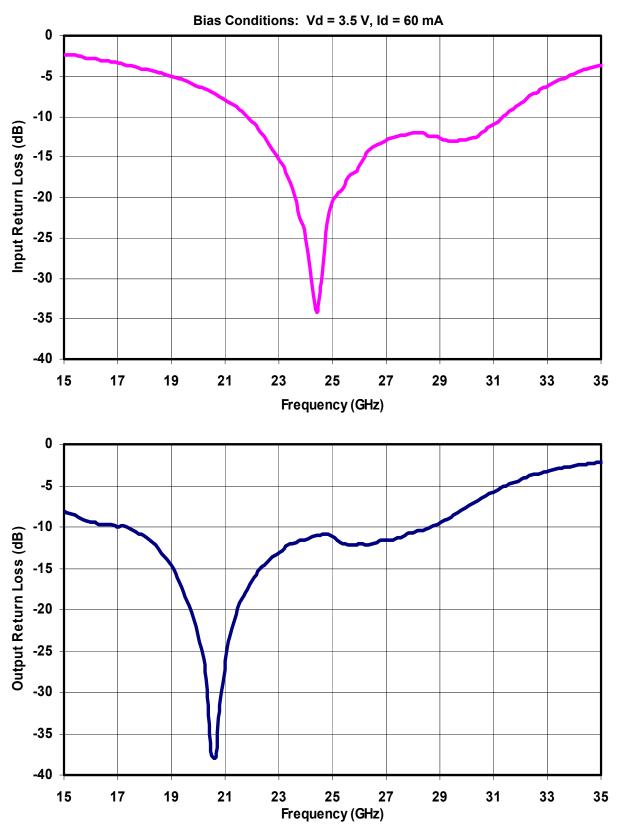

#### TABLE IV THERMAL INFORMATION

| PARAMETER                                                 | TEST CONDITIONS                            | Т <sub>сн</sub><br>(°С) | θ <sub>JC</sub><br>(°C/W) | Tm<br>(HRS) |
|-----------------------------------------------------------|--------------------------------------------|-------------------------|---------------------------|-------------|
| $\theta_{\text{JC}}$ Thermal Resistance (channel to Case) | Vd = 3.5 V<br>Id = 60 mA<br>Pdiss = 0.21 W | 98                      | 133                       | 7.2E+6      |


Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

### Median Lifetime (Tm) vs. Channel Temperature

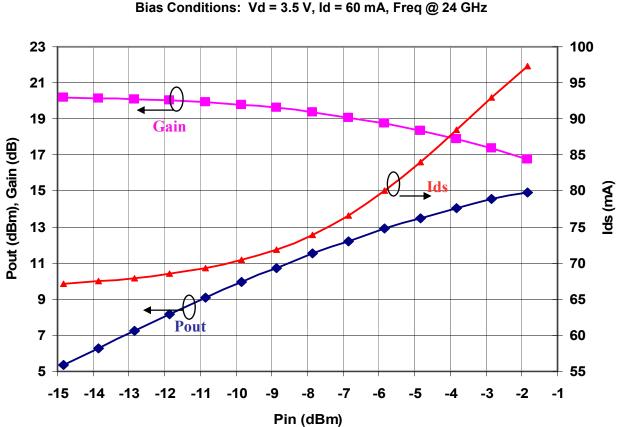









#### **Measured Data**

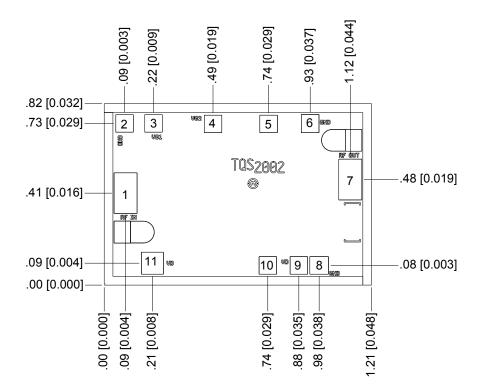





#### **Measured Data**








#### **Measured Data**

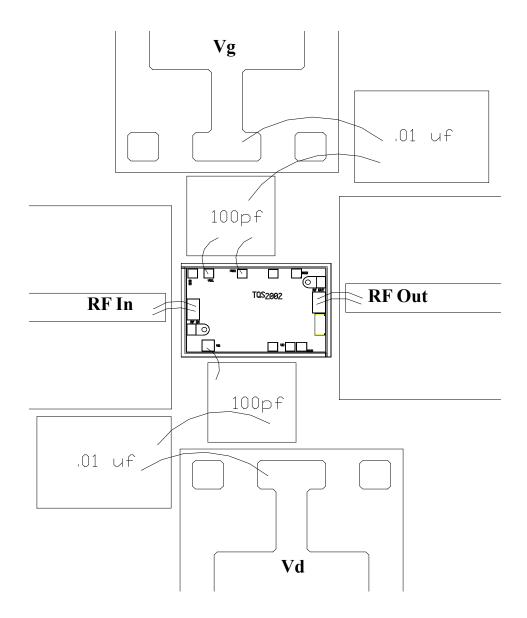
Bias Conditions: Vd = 3.5 V, Id = 60 mA, Freq @ 24 GHz



### **Mechanical Drawing**



Units: millimeters [inches] Thickness: 0.10 [0.004] (reference only) Chip edge to bond pad dimensions are shown to center of bond pads. Chip size tolerance: ±0.05 [0.002] RF ground through backside


| Bond Pad #1  | RF Input  | 0.11 x 0.19 | [0.004 x 0.007] |
|--------------|-----------|-------------|-----------------|
| Bond Pad #2  | N/C       | 0.08 x 0.08 | [0.003 x 0.003] |
| Bond Pad #3  | VG1       | 0.08 x 0.08 | [0.003 x 0.003] |
| Bond Pad #4  | VG2       | 0.08 x 0.08 | [0.003 x 0.003] |
| Bond Pad #5  | N/C       | 0.08 x 0.08 | [0.003 x 0.003] |
| Bond Pad #6  | N/C       | 0.08 x 0.08 | [0.003 x 0.003] |
| Bond Pad #7  | RF Output | 0.11 x 0.19 | [0.004 x 0.007] |
| Bond Pad #8  | N/C       | 0.09 x 0.08 | [0.004 x 0.003] |
| Bond Pad #9  | VD        | 0.09 x 0.08 | [0.004 x 0.003] |
| Bond Pad #10 | VD        | 0.09 x 0.08 | [0.004 x 0.003] |
| Bond Pad #11 | VD        | 0.10 x 0.10 | [0.004 x 0.004] |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.





### Chip Assembly Diagram



# All three Vd pads (pad # 9, 10, 11 from mechanical drawing) do not need to be connected

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.



#### **Assembly Process Notes**

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200 C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.