

77 GHz Flip-Chip Low Noise Amplifier

Measured Performance

Key Features

Frequency Range: 72 - 80 GHz
Noise Figure: 5 dB at 77 GHz

• Gain: 23 dB

Bias: Vd = 2.5 V, Id = 60 mA, Vg = +0.18 V
 Typical

 Technology: 0.13 um pHEMT with front-side Cu/Sn pillars

Chip Dimensions: 2.24 x 1.27 x 0.38 mm

Primary Applications

Automotive RADAR

Product Description

The TriQuint TGA4705-FC is a flip-chip low noise amplifier designed to operate at frequencies that target the automotive RADAR market. The TGA4705-FC is designed using TriQuint's proven 0.13 µm pHEMT process and front-side Cu / Sn pillar technology for reduced source inductance and superior noise performance at frequencies of 72 – 80 GHz. Die reliability is enhanced by using TriQuint's BCB polymeric passivation process.

The TGA4705-FC is a low noise amplifier that typically provides 23 dB small signal gain with 5 dB noise figure at 77 GHz. The TGA4705-FC is an excellent choice for applications requiring low noise in receive chain architectures.

Lead-free and RoHS compliant.

Table I Absolute Maximum Ratings 1/

Symbol	Parameter	Value	Notes
Vd-Vg	Drain to Gate Voltage	5.5 V	
Vd	Drain Voltage	4 V	<u>2</u> /
Vg	Gate Voltage Range	-1 to + 0.45 V	
ld	Drain Current	108 mA	<u>2</u> /
lg	Gate Current Range	-0.24 to +0.25 mA	
Pin	Input Continuous Wave Power	10 dBm	<u>2</u> /
Tchannel	Max Channel Temperature	200 C	

- These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum power dissipation listed in Table IV.

Table II
Recommended Operating Conditions

Symbol	Parameter <u>1</u> /	Value
Vd	Drain Voltage	2.5 V
ld	Drain Current	60 mA
Vg	Gate Voltage	+0.18 V Typical

1/ See assembly diagram for bias instructions.

Table III RF Characterization Table

Bias: Vd = 2.5 V, Id = 60 mA, Vg = 0.18 V, typical

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	NOMINAL	MAX	UNITS
Gain	Small Signal Gain	f = 76 –77 GHz	17	23	26	dB
IRL	Input Return Loss	f = 76 - 77 GHz	3	8	-	dB
ORL	Output Return Loss	f = 76 - 77 GHz	5	10	-	dB
NF	Noise Figure	f = 76 - 77 GHz	-	6	-	dB

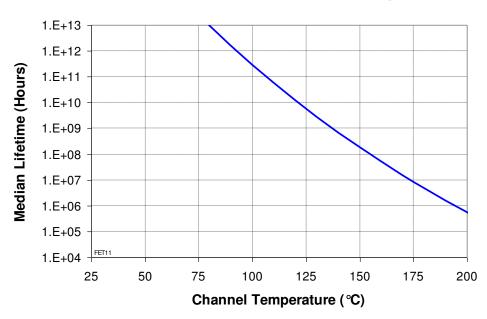
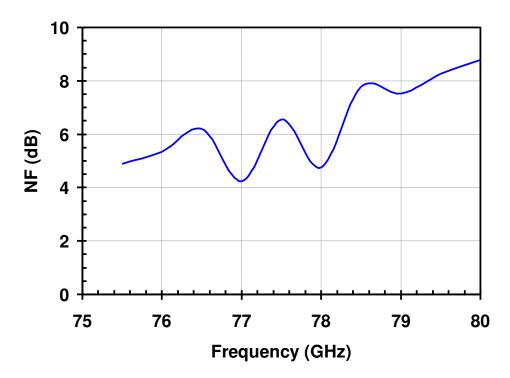


Table IV Power Dissipation and Thermal Properties

Parameter	Test Conditions	Value	Notes
Maximum Power Dissipation	Tbaseplate = 102.5 C	Pd = 0.432 W Tchannel = 150 C Tm = 2.4E+7 Hrs	<u>1</u> / <u>2</u> / <u>3</u> /
Thermal Resistance, θjc	Vd = 2 V Id = 60 mA Pd = 0.12 W Tbaseplate = 85 C	θjc = 110 C/W Tchannel = 98.2 C Tm = 1.68E+10 Hrs	<u>3</u> /
Mounting Temperature	·	Refer to Solder Reflow Profiles (pg 11)	
Storage Temperature		-65 to 150 C	

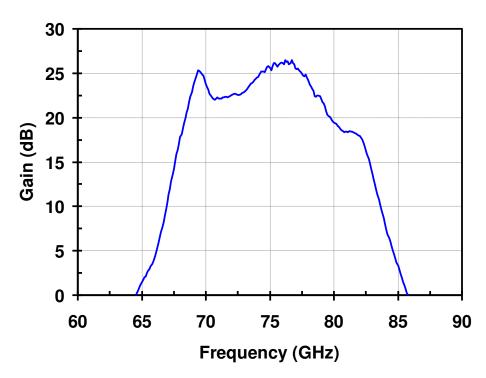
- I/ For a median life of 2.4E+7 hours, Power Dissipation is limited to $Pd(max) = (150 \text{ }^{\circ}\text{C} \text{Tbase }^{\circ}\text{C})/\theta \text{jc}.$
- 2/ Channel operating temperature will directly affect the device median lifetime (Tm). For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels.
- 3/ For this flip-chip die, the baseplate is a plane between the Cu/Sn pillars and the test board. For the TGA4705-FC, the critical pillars for thermal power dissipation are 18 thru 25. (See Mechanical Drawing.)

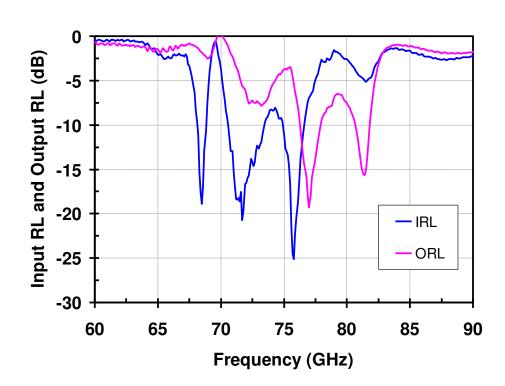
Median Lifetime (Tm) vs Channel Temperature



Measured Data on Face-down (flipped) Die on Carrier Board

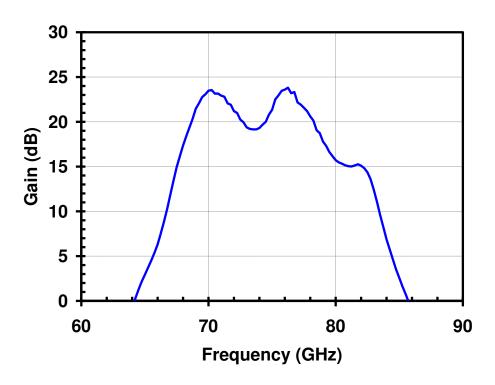
Bias conditions: Vd = 2 V, Id = 60 mA

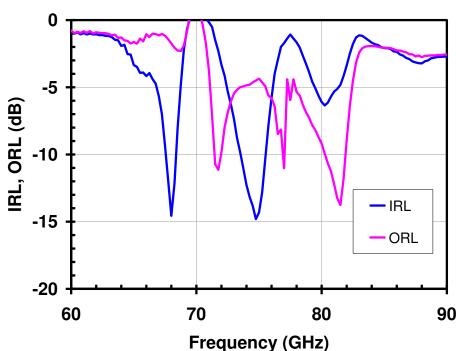




Measured Data on Face-down (flipped) Die on Carrier Board

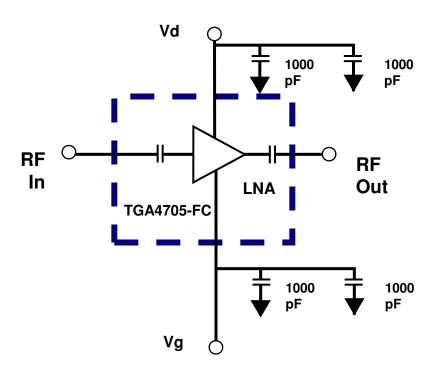
Bias conditions: Vd = 2 V, Id = 60 mA



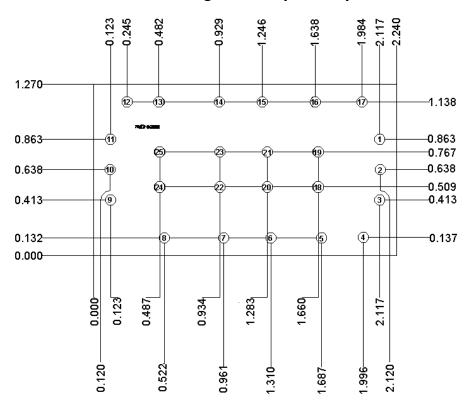


Measured Data on Face-down (flipped) Die on Carrier Board

Bias conditions: Vd = 2.5 V, Id = 60 mA



Electrical Schematic

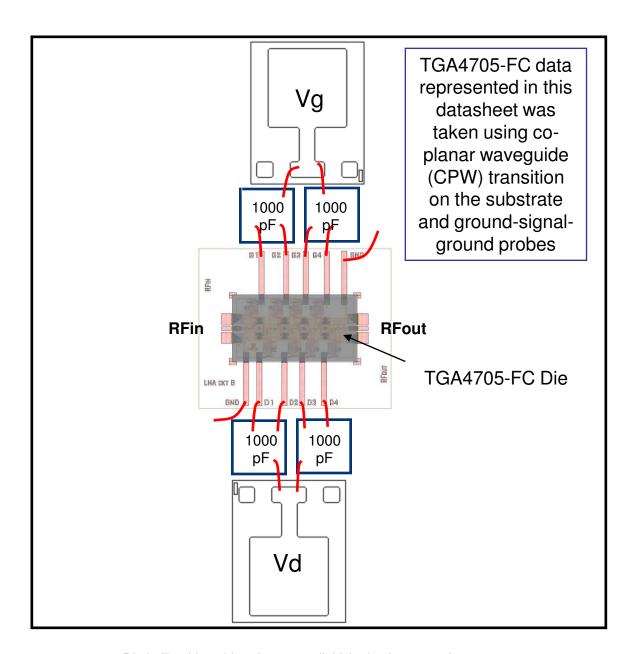

Bias Procedures

Bias-up Procedure	Bias-down Procedure
Vg set to -0.5 V	Turn off RF supply
Vd set to +2.5 V	Reduce Vg to -0.5V. Ensure Id ~ 0 mA
Adjust Vg more positive until Id is 60 mA. This will be Vg \sim +0.18 V	Turn Vd to 0 V
Apply RF signal to input	Turn Vg to 0 V

Mechanical Drawing Drawing is for chip face-up

Units: millimeters
Thickness: 0.380

Die x,y size tolerance: \pm 0.050


Chip edge to pillar dimensions are shown to center of pillar

	Onip dage to p	mar ammonioloi	is are shown to center	or piliar	
Pillar #4,12,18-25	DC Ground	0.075 Ø	Pillar #5	Vg4	0.075 Ø
Pillar #1, 3, 9, 11	RF CPW Ground	0.075 Ø	Pillar #13	Vd1	0.075 Ø
Pillar #2	RF Out	0.075 Ø	Pillar #14	Vd2	0.075 Ø
Pillar #10	RF In	0.075 Ø	Pillar #15	Vd3	0.075 Ø
Pillar #8	Vg1	0.075 Ø	Pillar #16	Vd4	0.075 Ø
Pillar #7	Vg2	0.075 Ø	Pillar #17	Mech. Support Only	0.075 Ø
Pillar #6	Vg3	0.075 Ø			

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Recommended Assembly Diagram

Die is flip-chip soldered to a 15 mil thick alumina test substrate

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Assembly Notes

Component placement and die attach assembly notes:

- · Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- · Air bridges must be avoided during placement.
- · Cu pillars on die are 65 um tall with a 22 um tall Sn solder cap.
- Recommended board metallization is evaporated TiW followed by nickel/gold at pillar attach interface. Ni is the adhesion layer for
 the solder and the gold keeps the Ni from oxidizing. The Au should be kept to a minimum to avoid embrittlement; suggested Au /
 Sn mass ratio must not exceed 8%.
- Au metallization is not recommended on traces due to solder wicking and consumption concerns. If Au traces are used, a physical
 solder barrier must be applied or designed into the pad area of the board. The barrier must be sufficient to keep the solder from
 undercutting the barrier.

Reflow process assembly notes:

- Minimum alloying temperatures 245 ℃.
- Repeating reflow cycles is not recommended due to Sn consumption on the first reflow cycle.
- · An alloy station or conveyor furnace with an inert atmosphere such as N2 should be used.
- Dip copper pillars in "no-clean flip chip" flux prior to solder attach. Suggest using a high temperature flux. Avoid exposing entire die to flux.
- · If screen printing flux, use small apertures and minimize volume of flux applied.
- · Coefficient of thermal expansion matching between the MMIC and the substrate/board is critical for long-term reliability.
- · Devices must be stored in a dry nitrogen atmosphere.
- · Suggested reflow will depend on board material and density.

Typical Reflow Profiles for TriQuint Cu / Sn Pillars

Process	Sn Reflow	
Ramp-up Rate	3 °C/sec	
Flux Activation Time and Temperature	60 – 120 sec @ 140 – 160 °C	
Time above Melting Point (245 °C)	60 – 150 sec	
Max Peak Temperature	300 °C	
Time within 5 °C of Peak Temperature	10 – 20 sec	
Ramp-down Rate	4 – 6 °C/sec	

Ordering Information

Part	Package Style
TGA4705-FC	GaAs MMIC Die

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.