

Applications

- Point to Point Radio / VSAT
- Millimeter-wave Communications
- Test Equipment

32-pin 5x5mm package

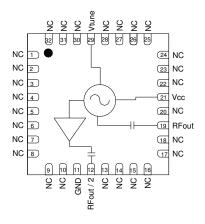
Product Features

Frequency range: 12.5 – 13.5 GHz

Tune Voltage: 1 – 13 V
Output power: 7 dBm Typical

Phase Noise: -110 dBc/Hz@100 KHz Typical

-133 dBc/Hz@1 MHz Typical


RFout/2 Frequency Range: 6.25 – 6.75 GHz

RFout/2 Output Power: 6 dBm Typical
Bias: Vcc = 5V, lcc = 165 mA Typical

Technology: TriQuint HBT

Dimension: 5 x 5 x 0.85 mm SLP

Functional Block Diagram

General Description

The TriQuint TGV2529-SM is a monolithic voltage controlled oscillator (VCO) designed to operate at frequencies that target the Point to Point, VSAT, and millimeter-wave communication markets.

The TGV2529-SM is manufactured on TriQuint's GaAs InGaP production process and typically provides 7 dBm output power at 13GHz with a -110dBc/Hz phase noise at 100 KHz offset. A divide-by-2 output is provided for the PLL function.

Lead-free and RoHS compliant.

Evaluation Boards are available upon request.

Pin Configuration

Pin #	Function Label
11	GND
12	RFout/2
19	RFout
21	Vcc
29	Vtune
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32	NC

Ordering Information

Part No.	ECCN	Description
TGV2529-SM	EAR99	12.5 – 13.5 GHz VCO with Divide by 2

Connecting the Digital World to the Global Network®

Standard T/R size = 500 pieces on a 7.0" reel.

Data Sheet: RevA 12/12/12 -1 of 14 - Disclaimer: Subject to change without notice

Specifications

Absolute Maximum Ratings

Parameter	Rating
Supply Voltage, Vcc	+5.5V
Tuning Voltage, Vtune	+14V
Power Dissipation, Pdiss	1.1W
Junction Temperature	200℃
Storage Temperature	-65 to 125°C

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

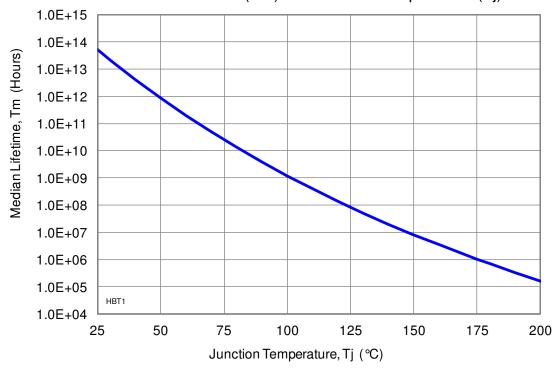
Parameter	Min	Тур	Max	Units
Operating Temp. Range	-40	+25	+85	°C
Supply Voltage, Vcc	4.8	5.0	5.2	V
Supply Current, Icc		165		mA
Tuning Voltage, Vtune	1		12	V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

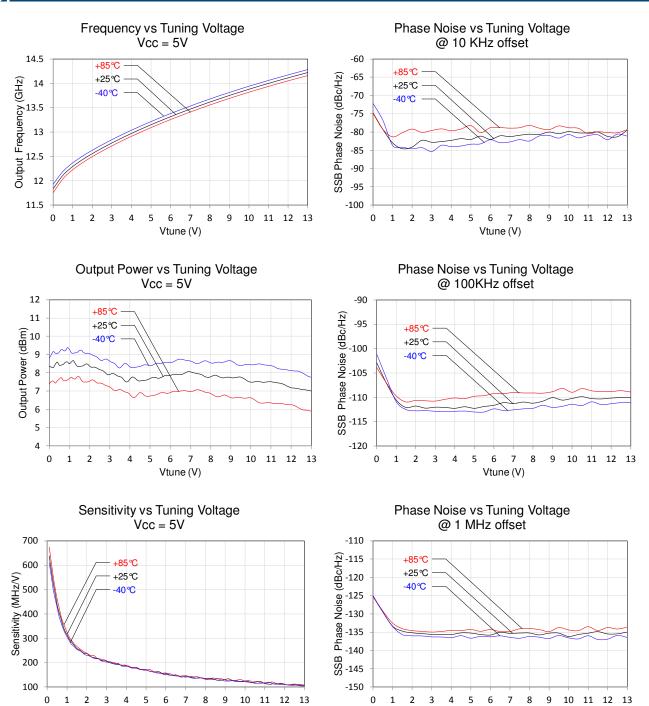
Test conditions unless otherwise noted: 25 °C, Vcc = 5 V, Icc = 165mA

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency		12.5		13.5	GHz
RFout/2 Output Frequency		6.25		6.75	GHz
Supply Voltage, Vcc		4.8	5	5.2	V
Supply Current, Icc		140	165	190	mA
Output Power		4	7	12	dBm
RFout/2 Output Power		2	6	10	dBm
Tuning Sensitivity	Vtune = 5V		175		MHz/V
Output Return Loss			7		dB
RFout/2 Output Return Loss			5		dB
Tuning Voltage		1		13	V
Pushing	Vtune = 5V		10		MHz/V
Pulling	VSWR 2:1		5		MHz (p-p)
Harmonics Freq/2 3*Freq/2 2*Freq			21 30 49		dBc
Phase Noise @ 10KHz Offset	Vtune = 5V		-80		dBc/Hz
Phase Noise @ 100KHz Offset	Vtune = 5V		-110		dBc/Hz
Phase Noise @ 1MHz Offset	Vtune = 5V		-133		dBc/Hz
Frequency Drift Rate			1.1		MHz/°C
Vtune Leakage	Vtune = 12V		5		μΑ



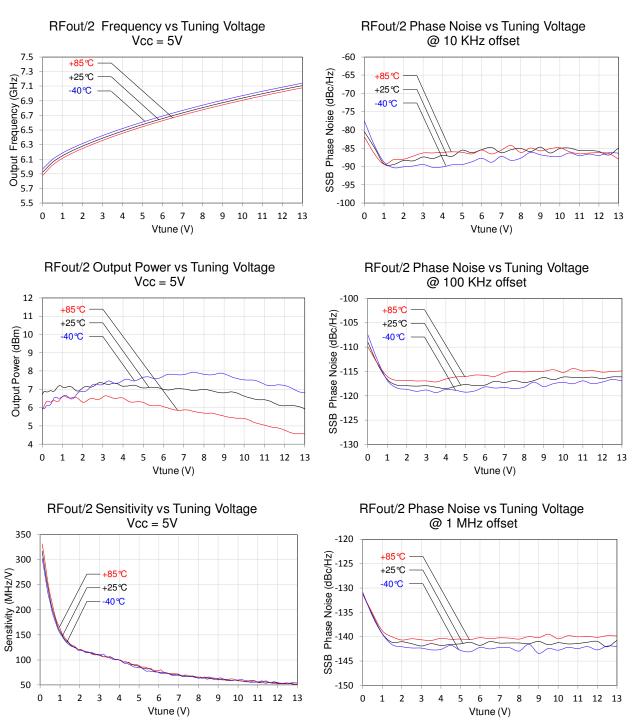
Specifications

Thermal and Reliability Information


Parameter	Condition	Rating
Thermal Resistance, θ_{JC} , measured to back of package	Tbase = 85 °C	$\theta_{JC} = 48 \text{ °C/W}$
Junction Temperature (Tj), and Median Lifetime (Tm)	Tbase = 85 °C Vd = 5V ld = 165mA	Tch = 125 °C Tm = 8.4 E+7 Hours

Median Lifetime (Tm) vs. Junction Temperature (Tj)

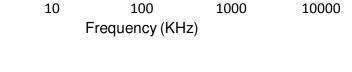
Typical Performance

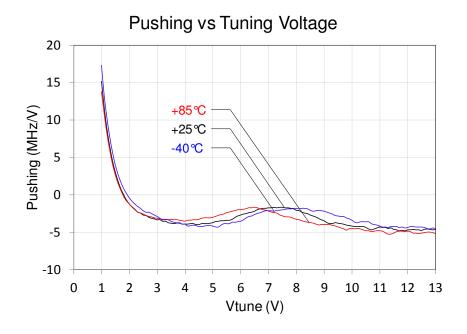


Vtune (V)

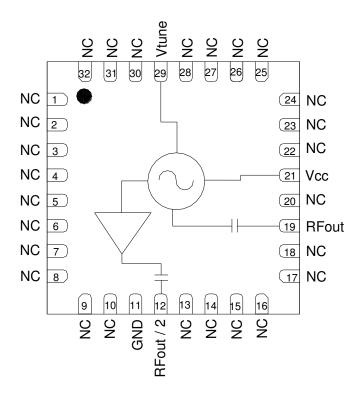
Vtune (V)

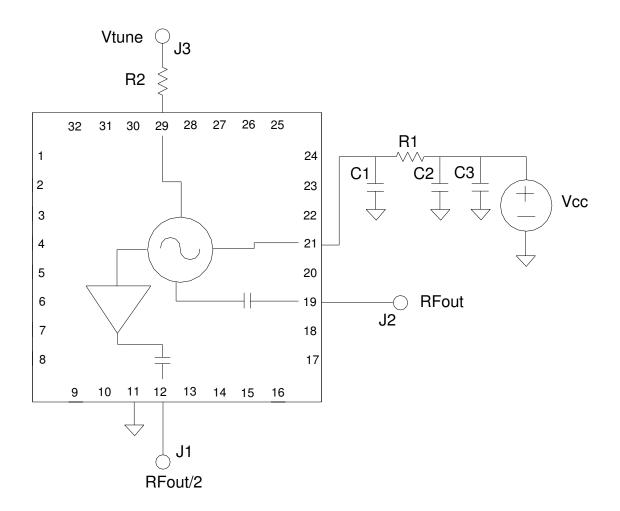
Typical Performance




-150 -160

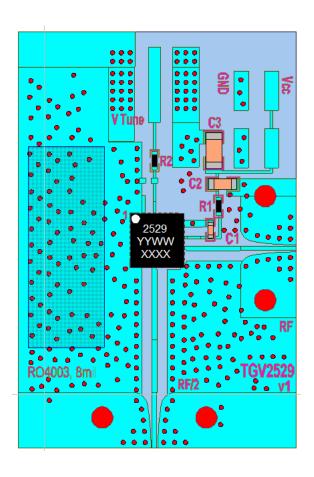
1

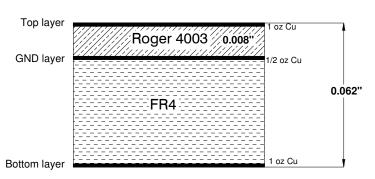

Typical Performance


Pin Description

Pin	Symbol	Description
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32	NC	No internal connection.
11	GND	Backside Paddle. Multiple vias should be employed to minimize inductance and thermal resistance
12	RFout/2	Frequency/2 Output match to 50 ohms, AC coupled
19	RFout	Output, matched to 50 ohms, AC coupled
21	Vcc	Supply voltage. Bias network is required; see Application Circuit on page 8 as an example.
29	Vtune	VCO tuning voltage.

Application Circuit




Application Circuit

PC Board Layout

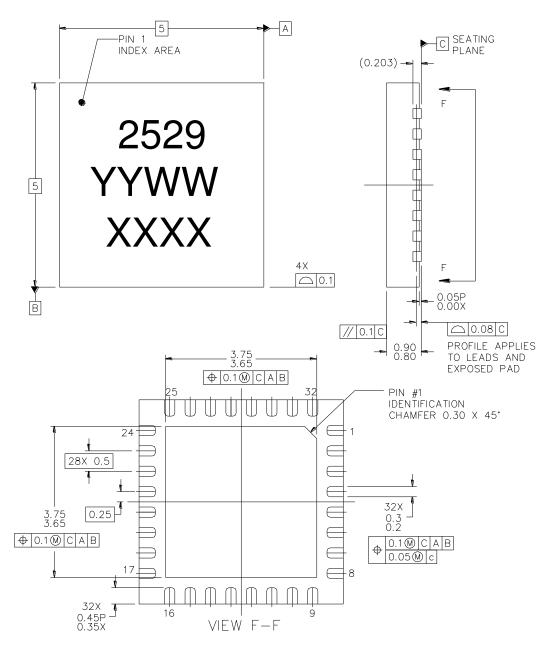
Top RF layer is 0.008" thick Roger RO4003, $\varepsilon_r = 3.38$. Microstrip 50Ω line detail: width =0.0175". For further technical information, refer to the <u>TGV2529-SM</u> Product Information page.

The pad pattern shown has been developed and tested for optimized assembly at Triquint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerance. Since surface mount processes vary from company to company, careful process development is recommended.

Bill of Material

Ref Des	Value	Description	Manufacturer	Part Number
C1	100 pF	Ceramic Cap, 0402	various	
C2	1 μF	Ceramic Cap, 0603	various	
C3	10 μF	Tantalum Cap, 0805/1206	various	
R1, R2	0 ohm	Chip Res, 0402	various	

Data Sheet: RevA 12/12/12


© 2012 TriQuint Semiconductor, Inc.

Mechanical Information

Package Marking and Dimensions

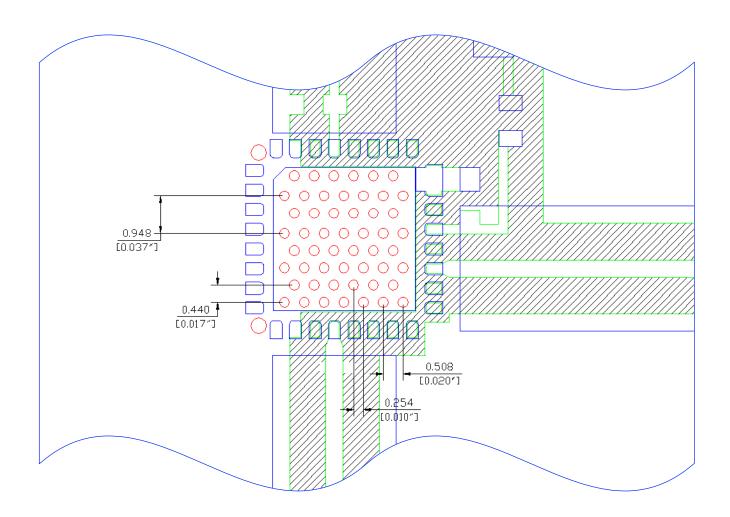
All dimensions are in millimeters.

This package is lead-free/RoHS-compliant. The package base is copper alloy and the plating material on the leads is 100% matte Sn. It is compatible with both lead-free (maximum 260 ℃ reflow temperature) and tin-lead (maximum 245 ℃ reflow temperature) soldering processes.

The TGV2529-SM will be marked with the "2529" designator and a lot code marked below the part designator. The "YY" represents the last two digits of the year the part was manufactured, the "WW" is the work week, and the "XXXX" is last 4 digits of lot number.

Data Sheet: RevA 12/12/12

- 10 of 14 - Disclaimer: Subject to change without notice

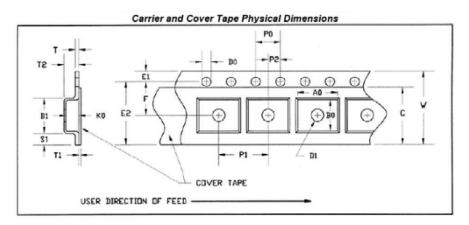

© 2012 TriQuint Semiconductor, Inc.

Mechanical Information

PCB Mounting Pattern

All dimensions are in millimeters [inches].

Notes:


- 1. The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.
- 2. Ground / thermal vias are critical for the proper performance of this device. Vias have a final plated thru diameter of .25 mm (.010").

Tape and Reel Information

Tape and reel specifications for this part are also available on the TriQuint website in the "Application Notes" section.

Standard T/R size = 500 pieces on a 7.0" reel.

CARRIER AND COVER TAPE DIMENSIONS

Part	Feature	Symbol	Size (in)	Size (mm)
Cavity	Length	A0	0.207	5.25
	Width	B0	0.207	5.25
	Depth	K0	0.043	1.1
	Pitch	P1	0.315	8.00
Distance Between Centerline	Cavity to Perforation Length Direction	P2	0.079	2.00
	Cavity to Perforation Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.374	9.50
Carrier Tape	Width	W	0.472	12.00

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: Class 0

Value: Passes ≥ 200V min
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

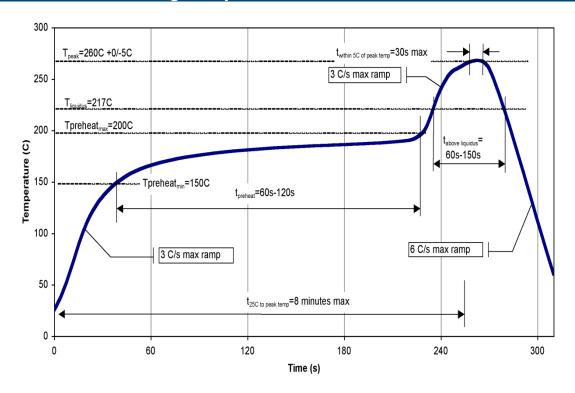
MSL Rating

Moisture Sensitivity Level (MSL) 3 at 260 ℃ convection reflow per JEDEC standard IPC/JEDEC J-STD-020.

Solderability

Compatible with both lead-free (260 ℃ max. reflow temp.) and tin/lead (245 ℃ max. reflow temp.) soldering processes.

Package lead plating: matte Sn


RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Recommended Soldering Temperature Profile

Data Sheet: RevA 12/12/12 © 2012 TriQuint Semiconductor, Inc. - 13 of 14 - Disclaimer: Subject to change without notice

Connecting the Digital World to the Global Network®

TGV2529-SM

12.5 – 13.5 GHz VCO with Divide by 2

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.972.994.8465 Email: <u>info-sales@tqs.com</u> Fax: +1.972.994.8504

For technical questions and application information:

Email: info-networks@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Data Sheet: RevA 12/12/12

© 2012 TriQuint Semiconductor, Inc.

- 14 of 14 - Disclaimer: Subject to change without notice

Connecting the Digital World to the Global Network®