
857072 242.5 MHz SAW Filter

Applications

• For WCDMA applications

Functional Block Diagram

Top view

Pin Configuration

Pin # Bal/Bal	Description
10	Input +
9	Input -
5	Output +
4	Output -
1,2,3	Case Ground
6,7,8	Case Ground

Ordering Information

Part No.	Description	
857072	packaged part	
857072-EVB	evaluation board	
Standard T/R size = 3000 units/reel.		

Product Features

- Usable bandwidth 25 MHz
- Low loss
- High attenuation
- Low EVM
- Balanced operation
- Ceramic Surface Mount Package (SMP-28C)
- Small Size: 7.00 x 5.50 x 1.24 mm
- Hermetically Sealed
- **RoHS** compliant (2002/95/EC), **Pb**-free (**Pb**)

General Description

9 The 857072 is a high-performance IF SAW filter with a center frequency of 242.5 and minimum 1.0 dB bandwidth of 25 MHz

It features low loss with excellent attenuation, and is designed to be used with a balanced input and output. The small size of this surface mounted filter makes it an economical choice for demanding applications such as WCDMA or other similar high data rate communications standards.

This device is RoHS compliant and Pb-free.

Specifications

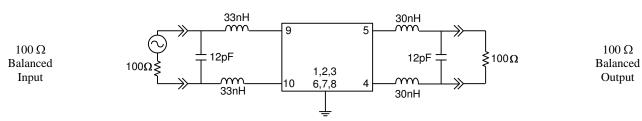
Electrical Specifications (1, 2)

Parameter ⁽⁴⁾	Conditions	Min	Typical ⁽⁵⁾	Max	Units
Center Frequency	f _o	-	242.5	-	MHz
Insertion Loss	at 242.5 MHz	-	9	10.5	dB
1.0 dB Bandwidth ⁽¹⁰⁾		25	27.6	-	MHz
2.0 dB Lower Band edge ⁽⁹⁾		-	228.7	230	MHz
2.0 dB Upper Band edge ⁽⁹⁾		255	256.8	-	MHz
35 dB Bandwidth ⁽¹⁰⁾		-	32.2	35.5	MHz
Pass Band Flatness ⁽⁷⁾	230 – 255 MHz	-	0.4	1.0	dB
Absolute Delay	over f _o +/- 12.5 MHz	-	0.67	0.70	μs
Group Delay Ripple ⁽⁶⁾	over f _o +/- 12.5 MHz	-	30	60	ns p-p
Group Delay Ripple ⁽⁶⁾	Any 3.84 MHz channel over f _o	-	29	50	ns p-p
	+/- 12.5 MHz				
EVM ⁽⁸⁾	Any 3.84 MHz channel over f _o	-	1.2	2	%
	+/- 12.5 MHz				
Temperature Coefficient		-	-94	-	ppm/ °C
Input Return Loss	over f _o +/- 12.5 MHz	8.5	12	-	dB
Output Return Loss	over f _o +/- 12.5 MHz	8.5	19	-	dB
Stopband Attenuation ⁽¹⁰⁾	5 – 25 MHz	40	46	-	dB
-	25 – 100 MHz	45	50	-	dB
	100 – 225 MHz	35	42	-	dB
	260 – 260.7 MHz	26	36	-	dB
	260.7 – 310 MHz	35	38	-	dB
	310 – 500 MHz	40	53	-	dB
Source/Load Impedance (balanced) ⁽¹¹⁾		-	100	-	Ω

Notes:

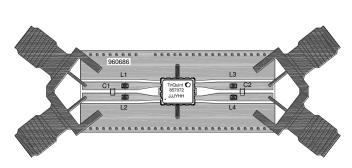
- 1. All specifications are based on the TriQuint schematic for the main reference design shown on page 3
- 2. An external impedance matching network with $\pm 2\%$ tolerance will be necessary to achieve the proposed specifications
- 3. In production, devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temperature
- 4. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances
- 5. Typical values are based on average measurements at room temperature
- 6. This ripple is defined as the worst peak to adjacent valley within specified frequency range
- 7. Passband Flatness is defined as the difference between maximum and minimum loss over the specified band
- 8. The EVM specification is guaranteed by design and measured approximately in production
- 9. 2.0 db Band edges are relative to Minimum Loss
- 10. All Bandwidth and Attenuation measurements are relative to loss at 1dB Center Frequency
- 11. This is the optimum impedance in order to achieve the performance shown

Absolute Maximum Ratings


(Operation of this device outside the parameter ranges given above may cause permanent damage)

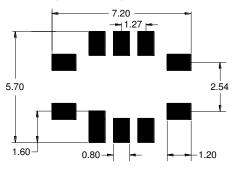
Parameter	Rating
Operable /Storage Temperature	-40 to +85 °C
Input Power	+10dBm (Measured with continuous sine wave signal. Expected lifetime of greater than or equal to 10K Hrs at 55 °C)

Reference Design – 100 Ω Bal Input, 100 Ω Bal Output


Schematic

Notes:

1. Actual matching values may vary due to PCB layout and parasitic


PC Board

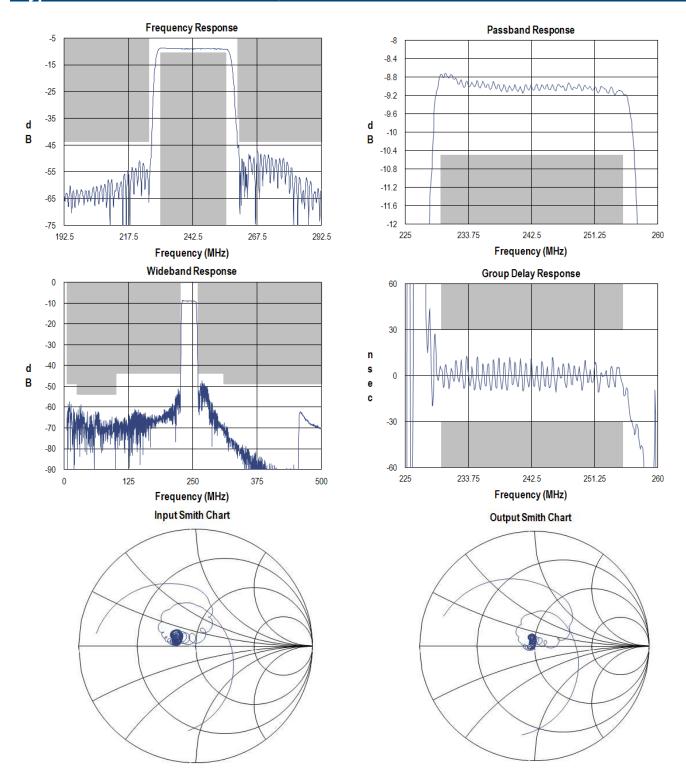
Notes:

Top, middle & bottom layers: 1 oz copper Substrates: FR4 dielectric, .031" thick Finish plating: Nickel: 3-8µm thick, Gold: .03-.2µm thick Hole plating: Copper min .0008µm thick

Mounting Configuration

Notes:

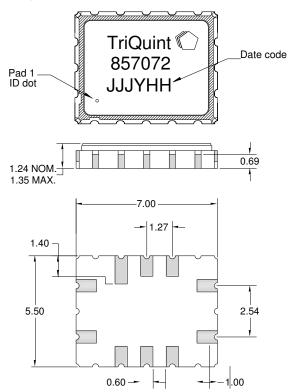
1. All dimensions are in millimeters.


2. This footprint represents a recommendation only.

Bill of Material

Reference Desg.	Value	Description	Manufacturer	Part Number
L1	33nH	Coil Wire-wound, 0603 5%	MuRata	LQW18AN33NJ00
L2	33nH	Coil Wire-wound, 0603, 5%	MuRata	LQW18AN33NJ00
L3	30nH	Coil Wire-wound, 0603, 5%	MuRata	LQW18AN30NJ00
L4	30nH	Coil Wire-wound, 0603, 5%	MuRata	LQW18AN30NJ00
C1	12pF	Chip Ceramic, 0603, 5%	MuRata	GRM1885C1H120JA01
C2	12pF	Chip Ceramic, 0603, 5%	MuRata	GRM1885C1H120JA01
SMA	N/A	SMA connector	Johnson Components	142-0701-801
PCB	N/A	3-layer	multiple	960686

Typical Performance (at room temperature)



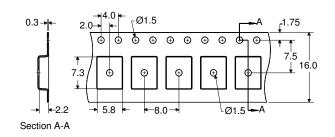
Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network

Mechanical Information

Package Information, Dimensions and Marking

Package Style: SMP-28C Dimensions: 7.00 x 5.50 x 1.24 mm

Body: Al₂O₃ ceramic Lid: Kovar, Ni plated Terminations: Au plating 0.5 - 1.0μm, over a 2-6μm Ni plating


All dimensions shown are nominal in millimeters All tolerances are $\pm 0.15 mm$ except overall length and width $\pm 0.10 mm$

The date code consists of: day of the current year (Julian, 3 digits), Y = last digit of the year (1 digit), and HH = hour (2 digits)

Tape and Reel Information

2.7 = 16.8 Pad 1 ID dot
Ø102

Standard T/R size = 3000 units/reel. All dimensions are in millimeters

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: 1A	
Value:	Passes ≥ 250 V min.
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

ESD Rating: B

Value:	Passes $\geq 200V$ min.
Test:	Machine Model (MM)
Standard:	JEDEC Standard JESD22-A115

MSL Rating

Devices are Hermetic, therefore MSL is not applicable

Solderability

Compatible with the latest version of J-STD-020, lead free solder, $260^{\circ}C$

Refer to **Soldering Profile** for recommended guidelines.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A ($C_{15}H_{12}Br_4O_2$) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.407.886.8860
Email:	info-sales@tqs.com	Fax:	+1.407.886.7061

For technical questions and application information:

Email: flapplication.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.