
857124 184.32 MHz SAW Filter

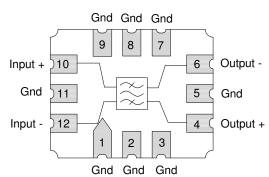
Applications

- General purpose wireless
- WCDMA/LTE applications
- 3G, 4G, Multistandard

Product Features

- Usable bandwidth 25 MHz
- Low loss
- High attenuation
- Low EVM
- Balanced operation
- Ceramic Surface Mount Package (SMP)
- Small Size: 7.01 x 5.51 x 1.63 mm
- Hermetically Sealed
- **RoHS** compliant, **Pb**-free

General Description


The 857124 is a high performance IF filter specifically designed for the demanding requirements of 4G wireless infrastructure systems.

Designed for versatile drive configurations, this filter is optimized for a balanced input and output, leading to elimination of baluns.

Low insertion loss, excellent attenuation and flat in-band performance leading to low EVM contribution, makes this filter an effective choice for our customers LTE and Multistandard platforms.

Functional Block Diagram

Top view

Pin Configuration

Pin # Bal/Bal	Description
10	Input +
12	Input -
4	Output +
6	Output -
1,2,3,5	Ground
7,8,9,11	Ground

Ordering Information

Part No.	Description	
857124	packaged part	
857124-EVB	evaluation board	
Standard T/R size = 3000 units/reel.		

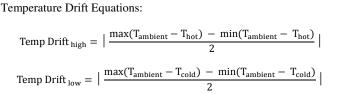
Specifications

Electrical Specifications (1)

Parameter ⁽³⁾	Conditions	Min	Typical ⁽⁴⁾	Max	Units
Center Frequency		-	184.32	-	MHz
Insertion Loss	at 184.32 MHz	-	7.8	9.0	dB
Amplitude Variation ⁽⁵⁾	171.82 – 196.82 MHz (P1dB)	-	0.5	1.0	dB
	Over any 5 MHz span within P1dB	-	0.3	0.8	dB
Group Delay Variation ⁽⁵⁾	171.82 – 196.82 MHz	-	25	40	ns p-p
Absolute Group Delay	at 184.32 MHz	-	0.50	0.55	μs
EVM	Over any 3.84 MHz span within P1dB	-	1.3	2.5	%
IIP3	Tones 5 MHz separated, power >5 dBm per tone	45	54	-	dBm
Temperature Drift ⁽⁶⁾		-	0.23	0.3	dB
Input VSWR	171.82 – 196.82 MHz	-	1.6	2.5	-
Output VSWR	171.82 – 196.82 MHz	-	2.0	2.5	-
Relative Attenuation ⁽⁷⁾	10.0 – 75.0 MHz	55	80	-	dB
	75.0 – 151.82 MHz	40	51	-	dB
	151.82 – 161.82 MHz	30	45	-	dB
	161.82 – 166.82 MHz	10	25	-	dB
	202.82 – 206.82 MHz	10	20	-	dB
	206.82 – 216.82 MHz	30	41	-	dB
	216.82 – 290.0 MHz	40	48	-	dB
	290.0 – 330.0 MHz	50	59	-	dB
	330.0 – 410.0 MHz	30	37	-	dB
	410.0 – 2000 MHz	55	72	-	dB
Source Impedance (balanced) ⁽⁸⁾		-	200	-	Ω
Load Impedance (balanced) ⁽⁸⁾		-	150	-	Ω

Notes:

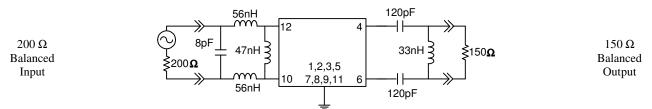
- 1. All specifications are based on the TriQuint schematic shown on page 3
- 2. In production, devices will be tested at room temperature to a guardbanded specification to ensure electrical compliance over temperature
- 3. Electrical margin has been built into the design to account for the variations due to temperature drift and manufacturing tolerances
- 4. Typical values are based on average measurements at room temperature
- 5. Variation is defined as the total peak to peak variation over the defined frequency range
- 6. Temperature Drift specification is defined on Page 3 and is guaranteed by design and won't be measured in production
- 7. Relative to insertion loss at center frequency
- 8. This is the optimum impedance in order to achieve the performance shown


Absolute Maximum Ratings

Parameter	Rating
Operating Temperature	-40 to $+85$ °C
Storage Temperature	-40 to +85 °C
Input Power	+22 dBm (max) CW for 24 hours at +55°C

Operation of this device outside the parameter ranges given above may cause permanent damage.

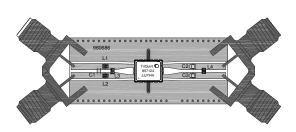
Temperature Drift Specification



Temperature Drift Terms Defined:

 $\begin{array}{l} T_{ambient} \mbox{ - } Transmission \mbox{ power in } dB \mbox{ measured } at +25 \mbox{ degrees } C. \\ T_{hot} \mbox{ - } Transmission \mbox{ power in } dB \mbox{ measured } at +85 \mbox{ degrees } C. \\ T_{cold} \mbox{ - } Transmission \mbox{ power in } dB \mbox{ measured } at -40 \mbox{ degrees } C. \\ Temperature \mbox{ Drift } \mbox{ - } Greater \mbox{ of Temp } Drift \mbox{ high } vs \mbox{ Temp } Drift \mbox{ low } \end{array}$

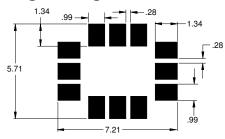
Reference Design – 200 Ω Bal Input, 150 Ω Bal Output


Schematic

Notes:

1. Actual matching values may vary due to PCB layout and parasitic

PC Board



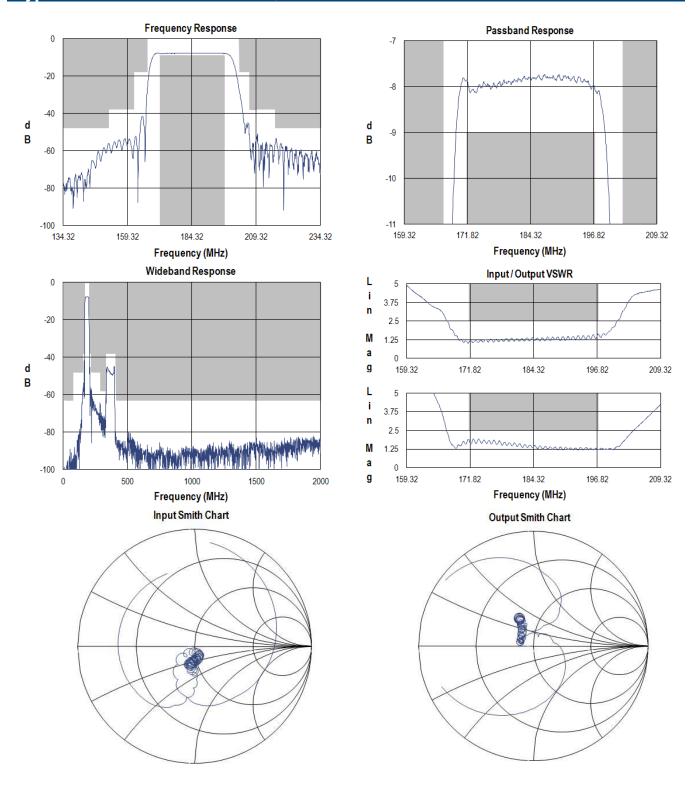
Notes:

Top, middle & bottom layers: 1 oz copper Substrates: FR4 dielectric, .031" thick Finish plating: Nickel: 3-8µm thick, Gold: .03-.2µm thick Hole plating: Copper min .0008µm thick

Bill of Material

Mounting Configuration

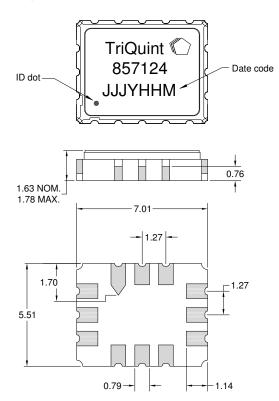
Notes:


1. All dimensions are in millimeters.

2. This footprint represents a recommendation only.

Reference Desg.	Value	Description	Manufacturer	Part Number
L1	56nH	Coil Wire-wound, 0603, 5%	Coilcraft	0603CS-56NXJBC
L2	56nH	Coil Wire-wound, 0603, 5%	Coilcraft	0603CS-56NXJBC
L3	47nH	Coil Wire-wound, 0603, 5%	Coilcraft	0603CS-47NXJBC
L4	33nH	Coil Wire-wound, 0603, 5%	Coilcraft	0603CS-33NXJBC
C1	8pF	Chip Ceramic, 0603, 5%	Panasonic	ECU-V1H080DCV
C2	120pF	Chip Ceramic, 0603, 5%	Panasonic	ECU-V1H121KCV
C3	120pF	Chip Ceramic, 0603, 5%	Panasonic	ECU-V1H121KCV
SMA	N/A	SMA connector	Johnson Components	142-0701-801
РСВ	N/A	3-layer	multiple	960686

Typical Performance (at room temperature)

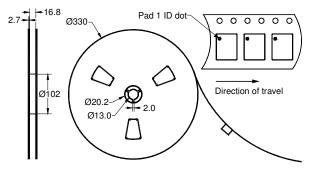


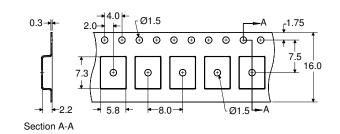
Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network

Mechanical Information

Package Information, Dimensions and Marking

Package Style: SMP-28B Dimensions: 7.01 x 5.51 x 1.63 mm


Body: *Al*₂*O*₃ ceramic Lid: *Kovar*, *Ni* plated Terminations: *Au* plating 0.5 - 1.0μm, over a 2-6μm *Ni* plating


All dimensions shown are nominal in millimeters All tolerances are ± 0.15 mm except overall length and width ± 0.10 mm

The date code consists of: day of the year (Julian, 3 digits), Y = last digit of the year (1 digit), HH = hour of the day (Military) and M=Manufacturing Site Code

Tape and Reel Information

Standard T/R size = 3000 units/reel. All dimensions are in millimeters

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: 1B	
Value:	Passes ≥ 800 V min.
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

ESD Rating: B

Value:	Passes ≥ 300 V min.
Test:	Machine Model (MM)
Standard:	JEDEC Standard JESD22-A115

MSL Rating

Devices are Hermetic, therefore MSL is not applicable

Solderability

Compatible with the latest version of J-STD-020, lead free solder, 260°C

Refer to Soldering Profile for recommended guidelines.

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A $(C_{15}H_{12}Br_4O_2)$ Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.407.886.8860
Email:	info-sales@tqs.com	Fax:	+1.407.886.7061

For technical questions and application information:

Email: flapplication.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.