Applications

- WLAN
- Cellular Infrastructure
- Test and Measurement
- Smart Energy
- UHF/VHF
- LMR
- General Purpose Broadband Wireless

16-pin 4x4mm QFN Package

Functional Block Diagram

Product Features

- General Purpose
- Low Insertion Loss
- +56 dBm Input IP3
- High Isolation
- Absorptive
- Single Positive Voltage Control
- Standard SMT Package

General Description

The TQP4M0010 is a GaAs FET single-pole, double throw (SPDT) high isolation absorptive switch that provides 100-4500 MHz broadband performance. The TQP4M0010 may be operated using a DC supply ranging from 3 to 5 Volts and with control signals operating from 1.8 to 5 Volts.

The TQP4M0010 is packaged in a RoHS-compliant, compact 4x4 mm surface-mount leadless package.

This SPDT switch is targeted for use in wireless infrastructure, test and measurement, or can be used for any general purpose wireless application.

Pin Configuration

Pin No.	Symbol
1	V _{DD}
2	V _{CTRL}
3	RFC
4-8, 13-16	NC
10, 11	GND
9	RF1
12	RF2
Backside Paddle	RF/DC GND
Backside Paddle	RF/DC GND

Ordering Information

Part No.	Description		
TQP4M0010	SPDT Absorptive Switch		
TQP4M0010-PCB 0.1-4.5 GHz Evaluation Board			
Standard T/R size = 2500 pieces on a 7" reel			

Disclaimer: Subject to change without notice Connecting the Digital World to the Global Network[®]

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-65 to 150 <i>°</i> C
RF Input Power, CW, 50Ω, T = 25 ℃	+36 dBm
Supply Voltage (V _{DD})	+6 V
Control Voltage (V _{CTRL})	V _{DD} +0.5 V

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
V _{DD}	2.75	5.0	5.25	V
Operating Temp. Range	-40		+85	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: $V_{DD} = +5 \text{ V}$, $V_{CTRL} = +3 \text{ V}$, Temp.=+25 °C, 50 Ω system

Parameter	Conditions	Min	Тур	Max	Units	
Operational Frequency Range		100		4500	MHz	
Control Voltogo	Low	0		0.4	V	
Control voltage	High	1.8		V _{DD} +0.5 V	V	
	0.1 – 1.0 GHz		0.5	0.8		
Insertion Loss	1.0 – 2.5 GHz		0.6	0.9		
	2.5 – 3.0 GHz		0.7	1.0	uВ	
	3.0 – 4.5 GHz		0.8			
	0.1 – 1.0 GHz	50	55			
Icolation DEC to DE1/DE2	1.0 – 2.5 GHz	45	48		dB	
	2.5 – 3.0 GHz	45	47		ŭВ	
	3.0 – 4.5 GHz		44			
	0.1 – 1.0 GHz		50			
loolation DE1 to DE2	1.0 – 2.5 GHz		44		dB	
	2.5 – 3.0 GHz		43			
	3.0 – 4.5 GHz		40			
Poturn Loss DEC Port	0.1 – 1.0 GHz	16	20		dB	
	1.0 – 4.5 GHz		13			
Input P1dB	<i>f</i> = 2 GHz		+33		dBm	
Input IP3	f = 2 GHz, Note 1		+56		dBm	
Cwitching Opened	t _{ON} ,t _{OFF} (50% CTL to 10/90% RF)		190		ns	
	t _{ON} ,t _{OFF} (50% CTL to 2/98% RF)		240		ns	
Total Supply current (I _{DD})			70	150	uA	

Notes:

1. IIP3 measured with two tones at an output power of +15 dBm / tone separated by 1 MHz.

Digital Control Voltages

State Bias Condition Low ≤ 0.4 V High ≥ 1.8 V

Switch Control Truth Table

	Signal Path State			
V _{CTRL}	RFC to RF1	RFC to RF2		
Low	Off (Isolation)	On (Insertion Loss)		
High	On (Insertion Loss)	Off (Isolation)		

Typical Performance

Test conditions unless otherwise noted: V_{DD} = +5 V,	V _{CTRL} = +3 V, Tem	p=25 ℃, 50 Ω sys	tem	
Parameter	•	Units		
Frequency	1	2	3	GHz
Insertion Loss (1)	0.5	0.6	0.7	dB
RFC Port Return Loss	20	16	13	dB
RFC to RF1/RF2 Isolation	55	50	47	dB
RF1 to RF2 Isolation	50	45	43	dB
Input P1dB	+36	+33	+30	dBm
Input IP3 ⁽²⁾	+53	+56	+56	dBm

Notes:

1. The Insertion Loss values reflect de-embedding of eval board RF I/O line losses that would not be present in target applications.

2. IIP3 measured with two tones at an input power of +15 dBm / tone separated by 1 MHz.

Performance Plots

Test conditions unless otherwise noted: V_{DD} =+5 V, V_{CTRL} = +3 V, Temp=+25 °C, 50 Ω system

Switching Speed

On Switching Speed at 25 $^{\circ}\!\mathrm{C}$

Off Switching Speed at 25 ℃

Pin Configuration and Description

Pin No.	Symbol	Description
1	V _{DD}	DC voltage supply
2	V _{CTRL}	Digital control voltage
3	RFC	Antenna input
4-8, 13-16	NC	No electrical connection. Provide land pads for PCB mounting integrity.
10, 11	GND	RF/DC Ground
9	RF1	RF output 1
12	RF2	RF output 2
Backside Paddle	RF/DC GND	RF/DC Ground. Use recommended via pattern and ensure good solder attach for best thermal and electrical performance.

Mechanical Information

Package Marking and Dimensions

Marking: Part number – M0010 Year, week - YYWW Assembly code - XXXXX

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012

PCB Mounting Pattern

COMPONENT SIDE

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating:Class 0 (RF Ports)Value:<250 V</td>ESD Rating:Class 1A (DC Lines)Value:≥250 volts to < 500 volts</td>Test:Human Body Model (HBM)Standard:JEDEC Standard JESD22-A114

ESD Rating:Class IVValue:>1000 VTest:Charged Device Model (CDM)Standard:JEDEC Standard JESD22-C101

MSL Rating

MSL Rating:Level 1Test:260 °C convection reflowStandard:JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260 ℃ max. reflow temperature) and tin/lead (245 ℃ max. reflow temperature) soldering processes.

Package contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Important Notice

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triguint.com	Tel:	+1.503.615.9000
Email:	info-sales@tqs.com	Fax:	+1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@tqs.com

Contact Information

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.