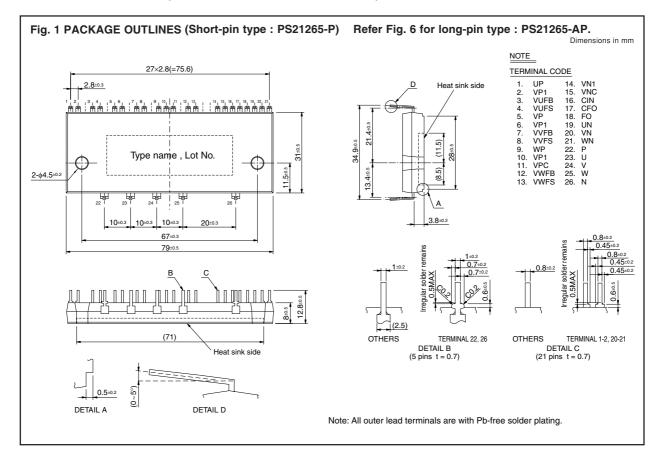
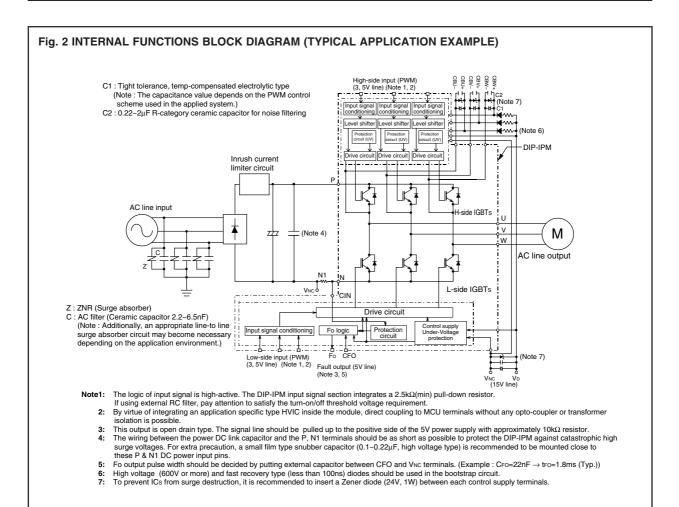
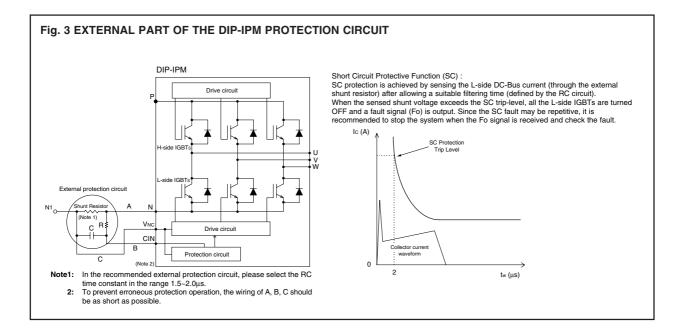

MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>


PS21265-P/AP

TRANSFER-MOLD TYPE INSULATED TYPE


APPLICATION


AC100V~200V three-phase inverter drive for small power motor control.

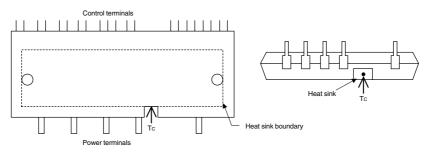
TRANSFER-MOLD TYPE INSULATED TYPE

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (T_j = 25° C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition		Ratings	Unit
Vcc	Supply voltage	Applied between P-N		450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N		500	V
VCES	Collector-emitter voltage			600	V
±IC	Each IGBT collector current	Tc = 25°C		20	A
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms		40	A
Pc	Collector dissipation	Tc = 25°C, per 1 chip		51.2	W
Tj	Junction temperature		(Note 1)	-20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tc ≤ 100°C) however, to insure safe operation of the DIP-IPM, the average junction temperature should be limited to T_{j(ave)} ≤ 125°C (@ Tc ≤ 100°C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VPC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	20	V
VIN	Input voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC	-0.5~VD+0.5	V
Vfo	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2 μ s	400	V
Тс	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minute, connecting pins to heat-sink plate	2500	Vrms

Note 2 : Tc measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Symbol Parameter		Condition		Limits		
				Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	—	1.95	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWDi part (per 1/6 module)	—	—	3.00	°C/W
Rth(c-f)F	Contact thermal resistance	Case to fin (per 1 module) thermal grease applied	—	—	0.067	°C/W

Note 3 : Grease with good thermal conductivity should be applied evenly with a thickness of about +100μm~+200μm on the contact surface of DIP-IPM and heat-sink.

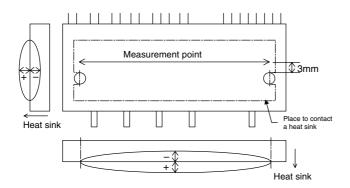
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

Symbol		O a maliti a m			Limits		
Symbol	Parameter		Condition		Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 20A, Tj = 25°C	—	1.55	2.05	
VCE(sat)	voltage	VIN = 5V	IC = 20A, Tj = 125°C	_	1.65	2.15	V
VEC	FWDi forward voltage	$T_j = 25^{\circ}C, -IC = 20A, VIN = 0V$		_	1.50	2.00	V
ton				0.65	1.25	1.85	μs
trr		VCC = 300V, VD = VDB	= 15V	_	0.30	—	μs
tc(on)	Switching times	IC = 20A, Tj = 125°C, V	IC = 20A, T _j = 125°C, VIN = 0 \leftrightarrow 5V Inductive load (upper-lower arm)		0.40	0.60	μs
toff]	Inductive load (upper-lo			1.50	2.10	μs
tc(off)					0.50	0.80	μs
ICES	Collector-emitter cut-off	VCE = VCES	$T_j = 25^{\circ}C$	_	_	1	mA
1023	current	VUE = VUES	Tj = 125°C	_	_	10	

CONTROL (PROTECTION) PART

Sumbol	Deremeter		Co	ndition		Limits			Unit	
Symbol	Parameter		Condition		Min.	Тур.	Max.	Unit		
		VD = VDB = 15V	Total o	of VP1-VPC, VN1-VN	IC	—	—	7.00	mA	
ID	Circuit current	VIN = 5V	VUFB-	VUFS, VVFB-VVFS,	Vwfb-Vwfs	—	—	0.55	mA	
ID		VD = VDB = 15V	Total o	f Vp1-Vpc, Vn1-Vn	IC	—	_	7.00	mA	
		VIN = 0V	VUFB-	/UFS, VVFB-VVFS, V	VWFB-VWFS	—	—	0.55	mA	
VFOH	Fault output voltage	Vsc = 0V, Fo circuit pull-up to 5V with $10k\Omega$		4.9	—	—	V			
VFOL	Fault output voltage	VSC = 1V, IFO = 1mA		—	—	0.95	V			
VSC(ref)	Short circuit trip level	$Tc = -20 \sim 100^{\circ}C, VD = 15V$ (Note 4)		0.45	—	0.52	V			
lin	Input current	VIN = 5V	VIN = 5V		1.0	1.5	2.0	mA		
UVDBt				Trip level		10.0	—	12.0	V	
UVDBr	Control supply under-voltage	Ti ≤ 125°C		Reset level		10.5	—	12.5	V	
UVDt	protection	1]≤ 125 €		Trip level		10.3	_	12.5	V	
UVDr				Reset level		10.8	_	13.0	V	
tFO	Fault output pulse width	CFO = 22nF			(Note 5)	1.0	1.8	—	ms	
Vth(on)	ON threshold voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC		2.1	2.3	2.6	V			
Vth(off)	OFF threshold voltage		P, VP, V	VP-VPC, UN, VN, VV		0.8	1.4	2.1	V	

Note 4: Short circuit protection is functioning only at the low-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the collector current rating (20A).
5: Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulse-width tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 × 10⁻⁶ × tFO [F].



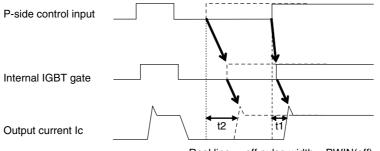
TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

Baramatar	Parameter Condition		Limits			Unit
Farameter			Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M4	Recommended : 1.18 N·m	0.98	—	1.47	N∙m
Weight			—	54	—	g
Heat-sink flatness		(Note 6)	-50	—	100	μm

Note 6 :

RECOMMENDED OPERATION CONDITIONS


Oursels al	Demonster	Condition		Recommended value			Linit	
Symbol	Parameter			Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	Applied between P-N		0	300	400	V	
Vd	Control supply voltage	Applied between VP1-VPC, VN1-	VNC	13.5	15.0	16.5	V	
Vdb	Control supply voltage	Applied between VUFB-VUFS, VV	FB-VVFS, VWFB-VWFS	13.0	15.0	18.5	V	
ΔV d, ΔV db	Control supply variation			-1	—	1	V/µs	
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°	С	2	—	_	μS	
fpwm	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C		—	—	20	kHz	
		VCC = 300V, VD = VDB = 15V,	fpwm = 5kHz	_	—	14.0		
lo	Allowable r.m.s. current	P.F = 0.8, sinusoidal PWM TC \leq 100°C, Tj \leq 125°C (Note 7)	fpwm = 15kHz	_	_	9.5	Arms	
PWIN(on)			(Note 8)	0.3	—	_		
		200 ≤ VCC ≤ 350V, 13.5 ≤ VD ≤ 16.5V,	Below rated current	1.4	_	_		
PWIN(off)	Minimum input pulse width	13.0 ≤ VDB ≤ 18.5V, –20°C ≤ TC ≤ 100°C,	Between rated current and 1.7 times of rated current	2.5	_	_	μS	
		N-line wiring inductance less than 10nH (Note 9)	Between 1.7 times and 2.0 times of rated current	3.0	_	_		
VNC	VNC variation	between VNC-N (including surge)	-5.0	—	5.0	V	

Note 7: The Allowable r.m.s. current value depends on the actual application conditions.
8: Input signal with ON pulse width less than PWIN(on) might make no response.
9: IPM might make no response or response delay to next turn-on pulse if off-pulse width is less than PWIN(off). (Please refer to Fig. 4) Please refer to Fig. 9 for recommended wiring method too.

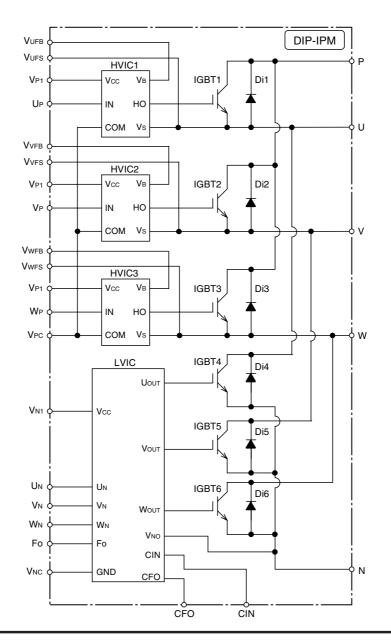
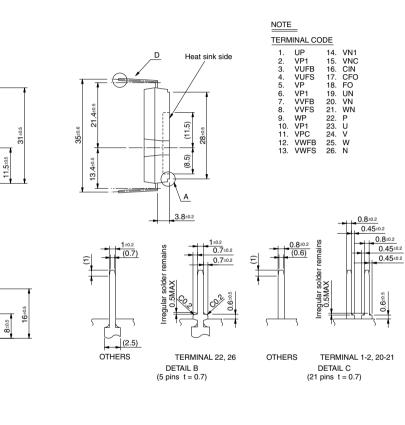

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 4 CURRENT OUTPUT WHEN INPUT SIGNAL IS LESS THAN ALLOWABLE MINIMUM INPUT PULSE WIDTH PWIN(off) (P-side only)

Real line \cdots off pulse width > PWIN(off) ; turn on time t1 Broken line \cdots off pulse width < PWIN(off) ; turn on time t2

Fig. 5 THE DIP-IPM INTERNAL CIRCUIT



MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>

PS21265-P/AP

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 PACKAGE OUTLINES (Long-pin type : PS21265-AP)

Note: All outer lead terminals are with Pb-free solder plating.

27×2.8(=75.6)

Type name , Lot No.

10±0.3

67±0.3

79±0.5

в

(71)

10±0.3

(0~2°)

0.5±0.2

DETAIL A

9,10,11,12,13 PHP+PH

26

Heat sink side

DETAIL D

20±0.3

С

 \oplus

,7,8, P1 P1

2.8±0.3

Ġф

 \oplus

2-04.5±0.2

.5.6.

6666

22

23

10±0.3

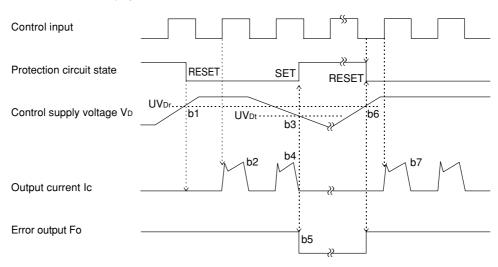
Oct. 2005

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 7 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (Lower-arms only) (with external shunt resistor and CR connection)

- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. Hard IGBT gate interrupt.
- a4. IGBT turns OFF.

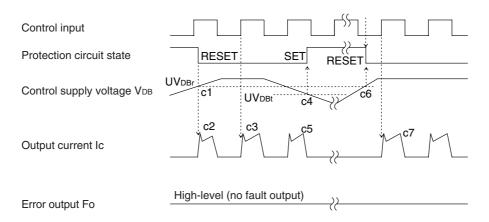

a5. FO timer operation starts : The pulse width of the FO signal is set by the external capacitor CFO.

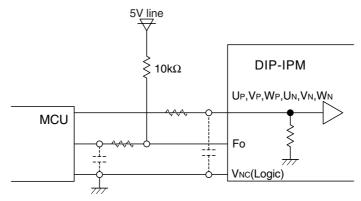
- a6. Input "L" : IGBT OFF state.
- a7. Input "H" : IGBT ON state, but during the Fo signal active period the IGBT doesn't turn ON.
- a8. IGBT OFF in spite of "H" input.

Lower-arms control input		
Protection circuit state	SETRESET	
Internal IGBT gate]
	sc a4	
Output current Ic		1
Sense voltage of the shunt resistance	SC reference voltage	1
Error output Fo	CR circuit time constant DELAY	

[B] Under-Voltage Protection (Lower-arm, UVD)

- b1. Control supply voltage rises : After the voltage reaches UVDr level, the circuits start to operate when the next input is applied.
- b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. FO operation starts. The minimum pulse width of FO is set by the external capacitor CFO, and FO outputs continuously during UV period.
- b6. Under voltage reset (UVDr).
- b7. Normal operation : IGBT ON and carrying current.




TRANSFER-MOLD TYPE INSULATED TYPE

[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises : Operation starts soon after UVDBr. c2. Normal operation : IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr)
- c6. Normal operation : IGBT ON and carrying current.

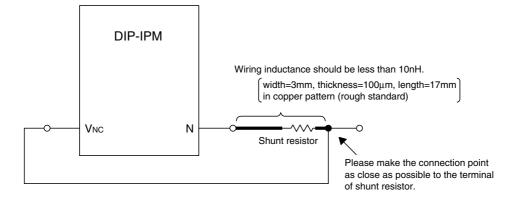
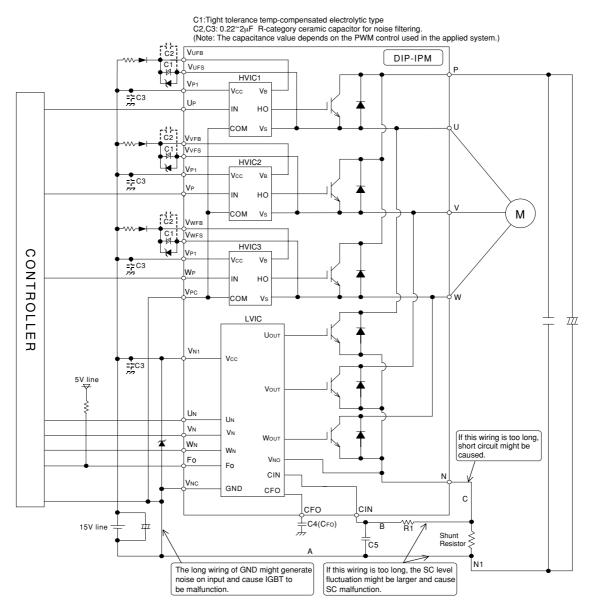


Fig. 8 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note : RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The DIP-IPM input signal section integrates a 2.5kΩ(min) pull-down resistor. Therefore, if using external RC filter, pay attention to satisfy the turn-on/off threshold voltage requirement.


Fig. 9 RECOMMENDED WIRING OF SHUNT RESISTOR

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 10 EXAMPLE OF TYPICAL DIP-IPM APPLICATION CIRCUIT

- Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2-3cm)
 - 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
 - 3: FO output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ resistor.
 - 4: Fo output pulse width is determined by the external capacitor between CFO and VNc terminals (CFO). (Example : CFO = $22nF \rightarrow tFO = 1.8ms$ (typ.))
 - 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. If using external RC filter, pay attention to satisfy the turn-on/off threshold voltage requirement.
 - 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 - **7**: Please set the R1C5 time constant in the range $1.5 \sim 2\mu s$.
 - 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
 - 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
 - 10: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.

