PMR210 Series Metallized Impregnated Paper, Class X1, 250 VAC/1,000 VDC

Overview

The PMR210 Series is constructed of multilayer metallized paper encapsulated and impregnated in self-extinguishing material meeting the requirements of UL 94 V–0.

Applications

Typical applications include worldwide use in contact protection, contact interference suppression and transient suppression.

Benefits

· Approvals: ENEC, UL

Rated voltage: 1,000 VDC, 250 VAC 50/60 Hz

Capacitance range: 0.022 – 0.1 μF
Capacitance tolerance: ±20%
Resistance range: 100 Ω

Resistance tolerance: ±30%
Lead spacing: 15.2 – 25.4 mm

Climatic category: 40/085/56/B, IEC 60068–1

Tape and reel packaging in accordance with IEC 60286–2

· RoHS Compliant and lead-free terminations

Operating temperature range of -40°C to +85°C

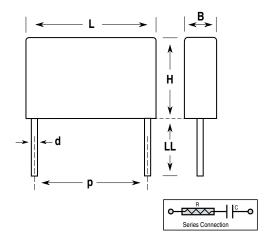
- Excellent self-healing properties which ensure long life even when subjected to frequent over voltages
- Good resistance to ionization due to impregnated paper dielectric
- · High dV/dt capability
- Impregnated paper ensures
 excellent stability and reliability
 properties, particularly in
 applications with continuous operation

Legacy Part Number System

PMR210	M	В	5220	M	100	R30
Series	Rated Voltage (VAC)	Lead Spacing (mm)	Capacitance Code (pF)	Capacitance Tolerance	Resistance (Ω)	Lead and Packaging Code
RC Snubber, Metallized Paper	M = 250	B = 15.2 C = 20.3 E = 25.4	Digits 2 – 4 (3) indicates the first three digits of the capacitance value. First digit indicates the total number of digits in the capacitance value.	M = ±20%	Resistance value in Ω	See Ordering Options Table

New KEMET Part Number System

Р	410	Q	M	223	M	250	A	H101
Capacitor Class	Series	Lead Spacing (mm)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VAC)	Lead and Packaging Code	Resistance (Ω)
P = Metallized Paper	RC Snubber	Q = 15.2 C = 20.3 E = 25.4	See Dimension Table	First two digits represent significant figures. Third digit specifies number of zeros.	M = ±20%	250 = 250	See Ordering Options Table	H + first two digits representing significant figures. Third digit specifies number of zeros.



Ordering Options Table

Lead Spacing Nominal (mm)	Type of Leads and Packaging	Lead Length (mm)	KEMET Lead and Packaging Code	Legacy Lead and Packaging Code
	Standard Lead and Packaging Options			
	Bulk (Bag) – Short Leads	6 +0/-1	С	R06
15.0	Bulk (Bag) – Max Length Leads	30 +5/-0	Α	R30
15.2	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
	Bulk (Tray) – Short Leads	6 +0/-1	С	R06
20.3	Bulk (Bag) – Max Length Leads	30 +5/-0	Α	R30
20.3	Tape & Reel (Standard Reel)	H ₀ = 18.5 +/-0.5	L	R19T0
	Other Lead and Packaging Options			
	Tape & Reel (Large Reel)	H ₀ = 18.5 +/-0.5	Р	R19T1
	Standard Lead and Packaging Options			
25.4	Standard Lead and Packaging Options Bulk (Bag) – Short Leads	6 +0/-1	С	R06

Dimensions - Millimeters

Size Code p		В		Н		L		d		
Size Code	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance	Nominal	Tolerance
QM	15.2	+/-0.4	7.3	Maximum	13	Maximum	18.5	Maximum	0.8	+/-0.05
QS	15.2	+/-0.4	8.5	Maximum	14.3	Maximum	18.5	Maximum	0.8	+/-0.05
CJ	20.3	+/-0.4	9	Maximum	15	Maximum	24	Maximum	0.8	+/-0.05
СР	20.3	+/-0.4	11.3	Maximum	16.5	Maximum	24	Maximum	0.8	+/-0.05
EE	25.4	+/-0.4	10.6	Maximum	16.1	Maximum	30.5	Maximum	1.0	+/-0.05
			Note: See Ord	lering Options	Table for lead	length (LL) opti	ons.			

Performance Characteristics

Capacitance Tolerance ±20% Resistance Range 100 Ω Resistance Tolerance ±30% Temperature Range -40°C to +85°C Climatic Category 40/085/56/B Approvals ENEC, UL Peak Pulse Voltage 1,000 V The series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs			
Resistance Range 100 Ω Resistance Tolerance ±30% Temperature Range -40°C to +85°C Climatic Category 40/085/56/B Approvals ENEC, UL Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs Insulation Resistance Minimum Value Between Terminals ≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The volume of the series resistance of the series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs			
Resistance Tolerance ±30% Temperature Range -40°C to +85°C Climatic Category 40/085/56/B Approvals ENEC, UL Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs Minimum Value Between Terminals ≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transies The 100% screening factory test is carried out at 3,000 VDC. The volume of the series resistance of the series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs			
Temperature Range -40°C to +85°C Climatic Category 40/085/56/B Approvals ENEC, UL Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs Minimum Value Between Terminals ≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The volume of the series resistance of the series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs Minimum Value Between Terminals ≥ 1,000 MΩ			
Climatic Category 40/085/56/B Approvals ENEC, UL Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC ≥ 50 μs and at 100 for RC < 50 μs Insulation Resistance Minimum Value Between Terminals ≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The volume 100 for RC < 50 μs			
Approvals ENEC, UL Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC \geq 50 μ s and at 100 for RC $<$ 50 μ s Insulation Resistance Minimum Value Between Terminals Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transies The 100% screening factory test is carried out at 3,000 VDC. The volume of the series resistance is defined at 1 kHz for RC \geq 50 μ s and at 100 for RC $<$ 50 μ s.			
Peak Pulse Voltage 1,000 V Series Resistance The series resistance is defined at 1 kHz for RC \geq 50 μs and at 100 for RC $<$ 50 μs Minimum Value Between Terminals \geq 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The volume of the series resistance is defined at 1 kHz for RC \geq 50 μs and at 100 for RC $<$ 60 μ			
Series Resistance $1000000000000000000000000000000000000$			
Insulation Resistance ≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The vo	ents.		
≥ 1,000 MΩ Pulse Current Maximum 12 A repetitive. Maximum 20 A peak for occasional transic The 100% screening factory test is carried out at 3,000 VDC. The vo	ents.		
The 100% screening factory test is carried out at 3,000 VDC. The vo	ents.		
Test Voltage Between Terminals level is selected to meet the requirements in applicable equipment standards. All electrical characteristics are checked after the test.	The 100% screening factory test is carried out at 3,000 VDC. The voltage level is selected to meet the requirements in applicable equipment standards. All electrical characteristics are checked after the test.		
In DC Applications Recommended voltage ≤ 1,000 VDC	1		
	The average losses may reach 0.5 W provided the surface temperature does not exceed + 85°C. For maximum permitted power dissipation vs.		
Maximum Allowable Power Dissipation vs. Ambient Temperature and Case Sizes. O.5 Pmax W 1 2 3 4 5 Derating Curves Tamb 40 50 60 70 80 85 9C	d		
Curve Dimension B (mm)			
1 7.3			
1 8.5			
3 11.3			
4 10.6			

Environmental Test Data

Test	IEC Publication	Procedure
Vibration	IEC 60068-2-6 Test Fc	3 directions at 2 hours each 10 – 500 Hz at 0.75 mm or 98 m/s ²
Bump	IEC 60068-2-29 Test Eb	4,000 bumps at 390 m/s ²
Solderability	IEC 60068-2-20 Test Ta	Wetting time for d > 0.8 < 1.5 seconds
Damp Heat Steady State	IEC 60068-2-78 Test Cab	+40°C and 93% RH, 56 days
Active Flammability	IEC 60384-14	V _R + 20 surge pulses at 2.5 kV (pulse every 5 seconds)
Passive Flammability	IEC 60384-14	IEC 60384–1, IEC 60695–11–5 Needle-flame test
Damp Heat Steady State	IEC 60068-2-78 Test Cab	+40°C and 93% RH, 56 days

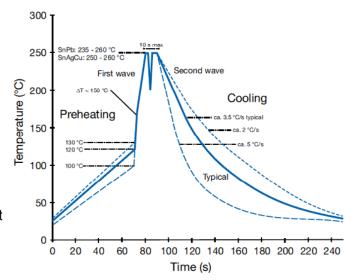
Approvals

Certification Body	Specification	File Number
	EN/IEC 60384-14	SE/0140-21A
A	UL 1414 (250 VAC)	E73869

Environmental Compliance

All KEMET EMI capacitors are RoHS Compliant.

Table 1 – Ratings & Part Number Reference


Lead	Cap Value	Posistanos (O)	Maximum	n Dimensio	ns in mm	New KEMET	Logov Port Number	
Spacing (p)	(µF)	Resistance (Ω)	В	Н	L	Part Number	Legacy Part Number	
15.2	0.022	100	7.3	13	18.5	P410QM223M250(1)H101	PMR210MB5220M100(1)	
15.2	0.033	100	8.5	14.3	18.5	P410QS333M250(1)H101	PMR210MB5330M100(1)	
20.3	0.047	100	9	15	24	P410CJ473M250(1)H101	PMR210MC5470M100(1)	
20.3	0.068	100	11.3	16.5	24	P410CP683M250(1)H101	PMR210MC5680M100(1)	
25.4	0.1	100	10.6	16.1	30.5	P410EE104M250(1)H101	PMR210ME6100M100(1)	
Lead Spacing (p)	Cap Value (µF)	Resistance Ω	B (mm)	H (mm)	L (mm)	New KEMET Part Number	Legacy Part Number	

⁽¹⁾ Insert lead and packaging code. See Ordering Options Table for available options.

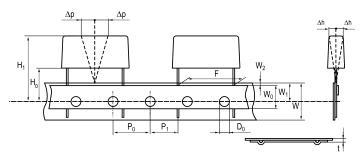
Soldering Process

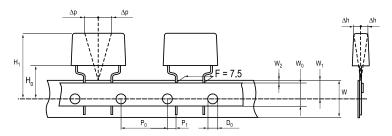
The implementation of the RoHS Directive has required the use of SnAuCu (SAC) or SnCu alloys as primary solder. These alloys require a higher liquidus temperature (217°C – 221°C) as compared to SnPb eutectic alloy (183°C). Due to the higher pre-heat and wave temperatures, the heat stress to components has increased considerably. Polypropylene capacitors are especially sensitive to soldering temperature due to the relatively low melting point of polypropylene material (160°C – 170°C). As a result, wave soldering can be destructive, especially to mechanically small polypropylene capacitors with lead spacings of 5 –10 mm. For more information, please refer to KEMET's Recommended Soldering Profiles or contact a KEMET representative. IEC Publication 61760–1 Edition 2 may also be consulted for general guidelines.

Marking

- · Manufacturer's logo
- · Article series
- · RC unit
- Rated capacitance
- · Rated resistance
- · Rated voltage
- · Manufacturing date code
- · IEC climatic category
- · Circuit diagram
- · Passive flammability class
- · Manufacturing date code

Packaging Quantities


Size Code	Lead Spacing (mm)	Thickness (mm)	Height (mm)	Length (mm)	Bulk Short Leads	Bulk Long Leads	Standard Reel ø 360 mm
QE	15.2	5.2	10.5	18.5	500	100	600
QS	15.2	8.5	14.3	18.5	300	500	350
CJ	20.3	9	15	24	200	1200	250
CP	20.3	11.3	16.5	24	150	1000	180
EE	25.4	10.6	16.1	30.5	150	1000	


Lead Taping & Packaging (IEC 60286-2)

Lead Spacing 10.2 – 15.2 mm

Lead Spacing 20.3 - 22.5 mm

Formed Leads from 10.2 to 7.5 mm

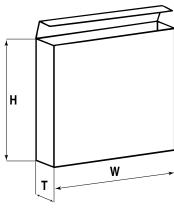
Taping Specification

	Dimensions in mm										
Lead spacing	+6/-0.1	F	Formed 7.5	10.2	15.2	20.3	22.5	F			
Carrier tape width	+/-0.5	W	18	18	18	18	18	18+1/-0.5			
Hold-down tape width	+/-0.3	W_{0}	9	12	12	12	12				
Position of sprocket hole	+/-0.5	W ₁	9	9	9	9	9	9+0.75/-0.5			
Distance between tapes	Maximum	W ₂	3	3	3	3	3	3			
Sprocket hole diameter	+/-0.2	D ₀	4	4	4	4	4	4			
Feed hole lead spacing	+/-0.3	P ₀ ⁽¹⁾	12.7(4)	12.7	12.7	12.7	12.7	12.7			
Distance lead – feed hole	+/-0.7	P ₁	3.75	7.6	5.1	8.9	5.3	P ¹			
Deviation tape – plane	Maximum	Δр	1.3	1.3	1.3	1.3	1.3	1.3			
Lateral deviation	Maximum	Δh	2	2	2	2	2	2			
Total thickness	+/-0.2	t	0.7	0.7	0.7	0.7	0.9 ^{MAX}	0.9 ^{MAX}			
Sprocket hole/cap body	Nominal	H ₀ ⁽²⁾	18+2/-0	18+2/-0	18+2/-0	18+2/-0	18.5+/-0.5	18+2/-0			
Sprocket hole/top of cap body	Maximum	H ₁ ⁽³⁾	35	35	35	35	58	58 ^{MAX}			

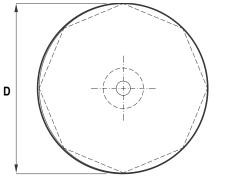
⁽¹⁾ Maximum cumulative feed hole error, 1 mm per 20 parts.

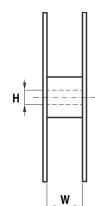
^{(2) 16.5} mm available on request.

⁽³⁾ Depending on case size.


^{(4) 15} mm available on request.

Lead Taping & Packaging (IEC 60286-2) cont'd


Ammo Specifications


Series	Dimensions (mm)					
Series	Н	W	Т			
R4x, R4x+R, R7x, RSB						
F5A, F5B, F5D	360	340	59			
F6xx, F8xx						
PHExxx, PMExxx, PMRxxx	330	330	50			

Reel Specifications

Covice	Dimensions (mm)					
Series	D	Н	W			
R4x, R4x+R, R7x, RSB	055	00				
F5A, F5B, F5D	355 500	30 25	55 (Max)			
F6xx, F8xx	300	25				
PHExxx, PMExxx, PMRxxx	360 500	30	46 (Max)			

Manufacturing Date Code (IEC-60062)

Y = Year, Z = Month				
Year	Code	Month	Code	
2000	M	January	1	
2001	N	February	2	
2002	Р	March	3	
2003	R	April	4	
2004	S	May	5	
2005	Т	June	6	
2006	U	July	7	
2007	V	August	8	
2008	W	September	9	
2009	X	October	0	
2010	Α	November	N	
2011	В	December	D	
2012	С			
2013	D			
2014	E			
2015	F			
2016	Н			
2017	J			
2018	K			
2019	L			
2020	M			

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast

Lake Mary, FL Tel: 407-855-8886

Northeast

Wilmington, MA Tel: 978-658-1663

West Chester, PA Tel: 610-692-4642

Central

Novi, MI

Tel: 248-994-1030

Carmel, IN Tel: 317-706-6742

West

Milpitas, CA Tel: 408-433-9950

Mexico

Zapopan, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe

Geneva, Switzerland Tel: 41-22-715-0100

Paris, France Tel: 33-1-4646-1009

Sasso Marconi, Italy Tel: 39-051-939111

Milan, Italy

Tel: 39-02-57518176

Rome, Italy

Tel: 39-06-23231718

Madrid, Spain Tel: 34-91-804-4303

Central Europe

Landsberg, Germany Tel: 49-8191-3350800

Dortmund, Germany Tel: 49-2307-3619672

Kwidzyn, Poland Tel: 48-55-279-7025

Northern Europe

Bishop's Stortford, United Kingdom

Tel: 44-1279-757201

Weymouth, United Kingdom Tel: 44-1305-830747

Coatbridge, Scotland Tel: 44-1236-434455

Färjestaden, Sweden Tel: 46-485-563934

Espoo, Finland

Tel: 358-9-5406-5000

Asia

Northeast Asia

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia

Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Other KEMET Resources

Tools			
Resource	Location		
Configure A Part: CapEdge	http://capacitoredge.kemet.com		
SPICE & FIT Software	http://www.kemet.com/spice		
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask		

Product Information			
Resource	Location		
Products	http://www.kemet.com/products		
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers		
RoHS Statement	http://www.kemet.com/rohs		
Quality Documents	http://www.kemet.com/qualitydocuments		

Product Request			
Resource	Location		
Sample Request	http://www.kemet.com/sample		
Engineering Kit Request	http://www.kemet.com/kits		

Contact			
Resource	Location		
Website	www.kemet.com		
Contact Us	http://www.kemet.com/contact		
Investor Relations	http://www.kemet.com/ir		
Call Us	1-877-MyKEMET		
Twitter	http://twitter.com/kemetcapacitors		

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute - and we specifically disclaim - any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

Digitally signed by: Marcy Brand DN: o=KEMET Corporation Location: Fort Lauderdale, FL

Date: D:2012.07.30 10:18:37-05'00'