Standard Products ACT4455/4459 Single Supply Transceiver for MIL-STD-1553/1760 & SAE-AS15531

www.aeroflex.com/Avionics November 5, 2008

FEATURES

- □ Small size, light weight and low standby power single transceiver
- □ Single +5V power supply
- Monolithic construction
- Outstanding MIL-STD-1553/SAE-AS15531 performance
- Designed for commercial, industrial and aerospace applications
- Processed and screened to MIL-STD-883 specs
- □ MIL-PRF-38534 compliant devices
- □ Aeroflex-Plainview is a Class H & K MIL-PRF-38534 manufacturer
- □ Packaging 28-pad Ceramic LCC, Hermetic
- DSCC SMD: 5962–96741 approved

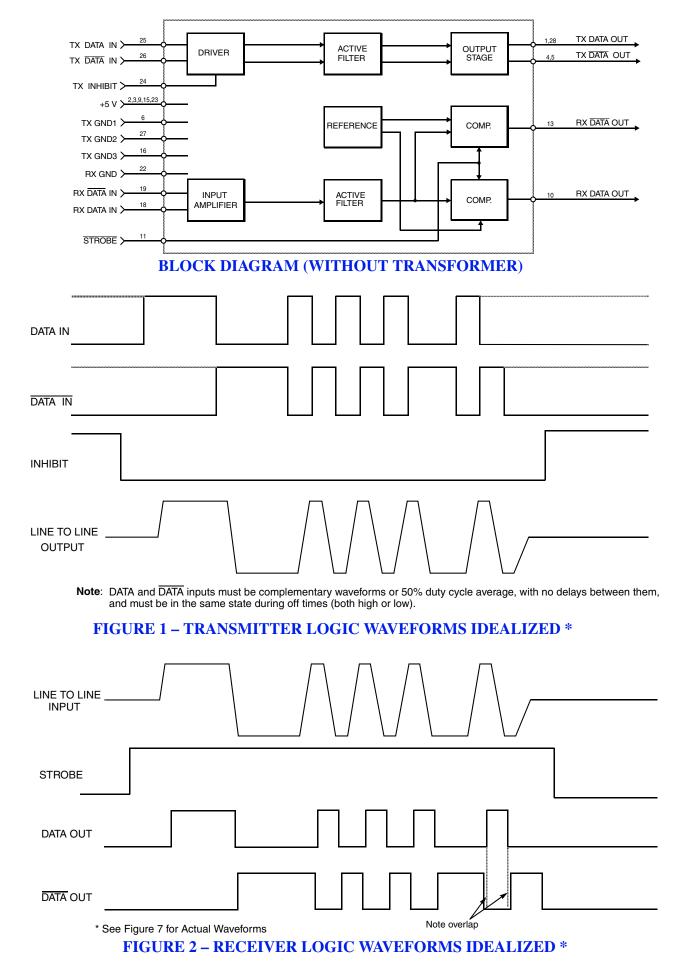
A passion for performance.

GENERAL DESCRIPTION

The Aeroflex-Plainview ACT4455/4459 series are next generation monolithic transceiver designs which provide full compliance with MIL-STD-1553A/B, MIL-STD-1760 and SAE-AS15531 requirements in the smallest packages with low power consumption and single power supply operation. The series performs the front-end analog function of inputting and outputting data through a transformer to the MIL-STD-1553 data bus.

Design of these transceivers reflects particular attention to active filter performance. This results in low bit and word error rate with superior waveform purity and minimal zero crossover distortion. Efficient transmitter electrical and thermal design provides low internal power dissipation and heat rise at high as well as low duty cycles. All inputs are internally pulled up to +5 Volts.

TRANSMITTER


The Transmitter section accepts bi-phase TTL data at the input and when coupled to the data bus with a 1:2.5 ratio transformer the data bus signal is typically 7.5 volts P-P at A-A' (See Figure 5). When both DATA and DATA inputs are held low or high, the transmitter output becomes a high impedance and is "removed" from the line. In addition, an overriding "INHIBIT input provides for the removal of the transmitter output from the line. A logic "1" applied to the "INHIBIT" takes priority over the condition of the data inputs and disables the transmitter (See Transmitter Logic Waveform, Figure 1). The Transmitter may be safely operated for an indefinite period with the bus (point A-A') short circuited at 100% duty cycle.

RECEIVER

The Receiver section accepts bi-phase differential data at the input and produces two TTL signals at the output. The outputs are DATA and DATA, and represent positive and negative excursions of the input beyond a pre-determined threshold (See Receiver Logic Waveform, Figure 2).

The pre-set internal thresholds will detect data bus signals exceeding 1.20 Volts P-P and reject signals less than 0.6 volts P-P when used with a transformer (See Figure 5 for transformer data and typical connection).

A low level at the Strobe input inhibits the DATA and DATA outputs.

ABSOLUTE MAXIMUM RATINGS

Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +150°C
Power supply voltage	-0.3VDC to +7.0VDC
Logic input voltage	-0.3VDC to +5.5VDC
Receiver differential input	±10 V
Receiver input voltage (common mode)	±5 V
Driver peak output current	1.0 A
Total package power dissipation over the full operating case temperature range	2.0 Watts
Maximum junction to case temperature	10°C
Thermal resistance – Junction to case	5°C/W

ELECTRICAL CHARACTERISTICS – DRIVER SECTION

INPUT CHARACTERISTICS, TX DATA IN OR TX DATA IN (Notes 2 & 3 Apply)

Parameter	Condition	Symbol	Min	Тур	Max	Unit
"0" Input Current	$V_{IN} = 0.4V$	I _{ILD}	-	-0.2	-0.4	mA
"1" Input Current	$V_{IN} = 2.7V$	I _{IHD}	-	1	40	μΑ
"0" Input Voltage		V _{ILD}	-	-	0.7	V
"1" Input Voltage		V _{IHD}	2.0	-	-	V

INHIBIT CHARACTERISTICS

"0" Input Current	$V_{IN} = 0.4V$	I _{ILI}	-	-0.2	-0.4	mA
"1" Input Current	$V_{IN} = 2.7 V$	I _{IHI}	-	1.0	40	μΑ
"0" Input Voltage		V _{ILI}	-	-	0.7	V
"1" Input Voltage		V _{IHI}	2	-	-	V
Delay from TX inhibit, $(0 \rightarrow 1)$ to inhibited output		t _{DXOFF}	-	250	450	nS
Delay from TX inhibit, $(1\rightarrow 0)$ to active output		t _{DXON}	-	150	250	nS
Differential Output Noise, inhibit mode		V _{NOI}	-	2	10	mVp-p
Differential Output Impedance (inhibited)	Note 1	Z _{OI}	2K	-	-	Ω

OUTPUT CHARACTERISTICS

Differential output level	$RL = 35 \Omega$	V _O	6.5	7.5	9	Vp-p
Rise and fall times (10% to 90% of p-p output)		t _r	100	200	300	nS
Output offset at point A-A' on Figure 5, 2.5μ S after midpoint crossing of the parity bit of the last word of a 660 μ S message	RL = 35 Ω	V _{OS}	-	-	±90	mVpeak
Delay from 50% point of TX DATA or $\overline{\text{TX DATA}}$ input to zero crossing of differential signal		t _{DTX}	-	120	250	nS

ELECTRICAL CHARACTERISTICS – RECEIVER SECTION

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Differential Voltage Range (See Figure 5, point P-P')	TXFMR 2.5:1	V _{IDR}	-	14	20	Vp-p
Common Mode Rejection Ratio (Note 3)		CMRR	45	-	-	dB

STROBE CHARACTERISTICS (LOGIC "0" INHIBITS OUTPUT)

"0" Input Current	$V_{S} = 0.4V$	I _{IL}	-	-0.2	-0.4	mA
"1" Input Current	$V_{S} = 2.7V$	I_{IH}	-	1	+40	μΑ
"0" Input Voltage		V _{IL}	-	-	0.7	V
"1" Input Voltage		V _{IH}	2.0	-	-	V
Strobe Delay (Turn-on or Turn-off)		t _{SD}	-	50	200	nS

THRESHOLD CHARACTERISTICS (SINEWAVE INPUT)

Internal Threshold Voltage (Referred to the bus)	100KHz-1MHz	V _{TH}	0.56	0.82	1.10	Vp-p
--	-------------	-----------------	------	------	------	------

OUTPUT CHARACTERISTICS, RX DATA AND RX DATA

"1" State	$I_{OH} = -0.4 mA$	V _{OH}	2.5	3.7	-	V
"0" State	$I_{OL} = -4mA$	V _{OL}	-	0.35	0.5	V
Delay, (average) from differential input zero crossings to RX DATA and RX DATA output	50% points	t _{DRX}	-	340	500	nS

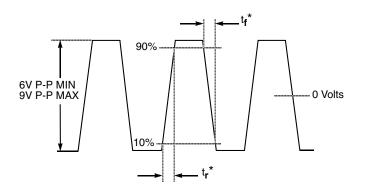
POWER DATA

POWER SUPPLY CURRENTS – PER CHANNEL

Transmitter Standby			-	18	30	
25% Duty Cycle	(Note 4)	Icc	-	150	220	mA
50% Duty Cycle	(1000 4)	ICC	-	300	395	шл
100% Duty Cycle			-	600	745	

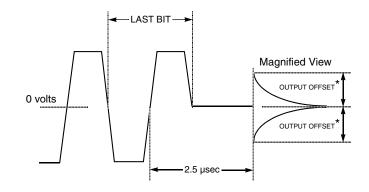
POWER SUPPLY VOLTAGE

Operating Power Supply Voltage Range		V _{CC}	+4.75	+5.00	+5.50	V
--------------------------------------	--	-----------------	-------	-------	-------	---


NOTES:

1. Power on or off, measured from 75KHz to 1MHz at point A-A' and transformer self impedance of $3K\Omega$ minimum.

 V_{cc} = 5 Volts ±0.1 V, bypassed by 2.2 μF (Tantalum recommended) Capacitor minimum. All measurements & specifications apply over the temperature range of -55°C to +125°C (case temperature) unless otherwise specified.


3. When measured at point A-A' with \pm 10 Volt peak, line to ground, DC to 2MHz.

4. Typical power is measured with V_{bus} at point A-A' = 7.5 Vp-p.

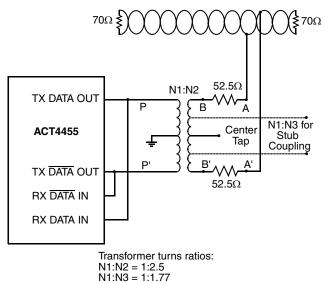

* Rise and fall times measured at point A-A' in Figure 5

FIGURE 3 – TRANSMITTER (TX) OUTPUT **WAVEFORM**

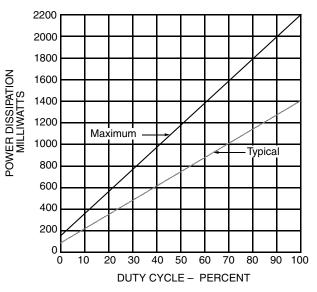
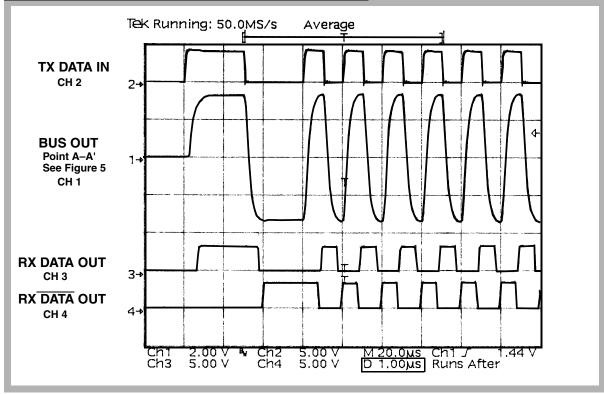
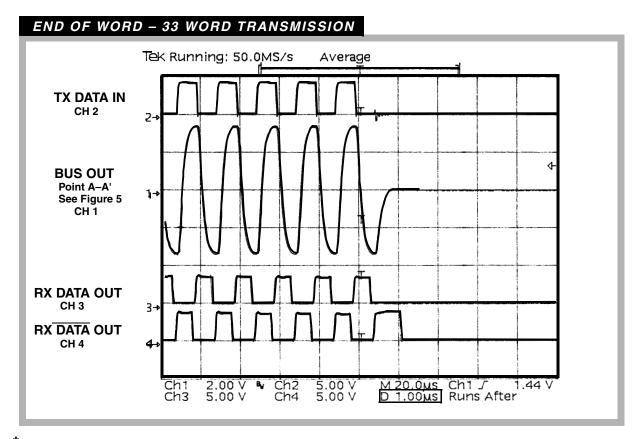

*Offset measured at point A-A' in Figure 5

FIGURE 4 – TRANSMITTER (TX) OUTPUT **OFFSET**

Use Technitrol 1553-45 or equivalent

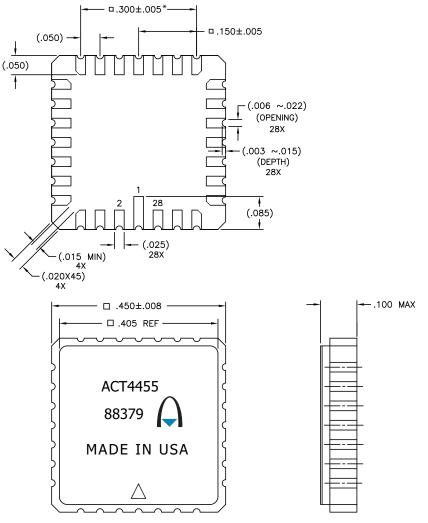




Note: Vcc = 5VDC, Transformer ratio 1:2.5, VBUS (pt A-A') at 7.5Vp-p

FIGURE 6 – POWER DISSIPATION VS. **DUTY CYCLE**

START OF WORD – 33 WORD TRANSMISSION



* Oscilloscope used is a TEK TDS540 with Probe 6139A.

FIGURE 7 ACTUAL HYBRID WAVEFORMS * – 25°C TYPICAL

LCC LEADLESS CHIP CARRIER PACKAGE CONFIGURATION

* NOTE: Castellation spacing .050 x6, Tol. Non-Accumulative

Pin #	Function	Pin #	Function
1	TX DATA OUT	15	+5V
2	+5V	16	TX GND3 **
3	+5V	17	NC
4	TX DATA OUT	18	RX DATA IN
5	TX DATA OUT	19	RX DATA IN
6	TX GND1 **	20	NC
7	NC	21	NC
8	NC	22	RX GND **
9	+5V	23	+5V
10	RX DATA OUT	24	TX INHIBIT
11	STROBE	25	TX DATA IN
12	NC	26	TX DATA IN
13	RX DATA OUT	27	TX GND2 **
14	NC	28	TX DATA OUT

PIN NUMBERS & FUNCTIONS

** NOTE: Grounds not Internally connected

ORDERING INFORMATION

MODEL #	DSCC SMD #	SCREENING	RECEIVER DATA LEVEL
ACT4455	-	Military Temperature, -55°C to +125°C Screened in accordance with MIL-PRF-38534, Class H.	Normally Low
ACT4455-001-1	5962-9674101H3C	In accordance with DSCC SMD 5962-96741	Normalla Lori
ACT4455-001-2	5962-9674101H3A	In accordance with DSCC SMD 3962-96741	Normally Low
ACT4459-001-1	5962-9674102H3C	In accordance with DSCC SMD 5962-96741	Normally High
ACT4459-001-2	5962-9674102H3A	In accordance with DSCC SMD 3962-96741	Normally High

PLAINVIEW, NEW YORK Toll Free: 800-THE-1553 Fax: 516-694-6715

SE AND MID-ATLANTIC Tel: 321-951-4164 Fax: 321-951-4254

www.aeroflex.com

INTERNATIONAL Tel: 805-778-9229 Fax: 805-778-1980

WEST COAST Tel: 949-362-2260 Fax: 949-362-2266 NORTHEAST Tel: 603-888-3975 Fax: 603-888-4585

CENTRAL Tel: 719-594-8017 Fax: 719-594-8468

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused

info-ams@aeroflex.com