Standard Products ACT4445 Transceiver for MIL-STD-1553 in a Chipscale Package

www.aeroflex.com/Avionics

May 10, 2005

Features

- □ Transceiver meets MIL-STD-1553A & B
- **\Box** Bipolar Supply ±15V, Logic Supply +5V
- □ Replacement for ACT4487
- □ Current source output
- Monolithic construction
- Designed for commercial, industrial and aerospace applications
- □ Miniature Chipscale Package Bumped Chip CarrierTM (BCC++)

Note: BCC++ and Bumped Chip Carrier are Trademarks of Fujitsu Ltd.

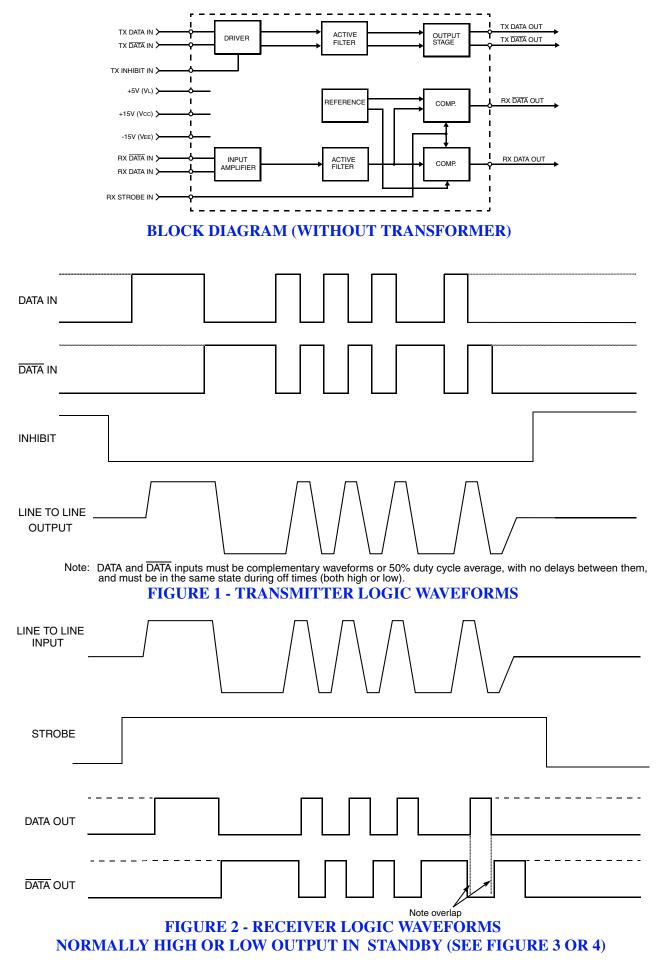
DESCRIPTION

The Aeroflex Plainview ACT 4445 is a monolithic transceiver that provides full compliance to MIL-STD-1553A/B requirements in a small package, with low power consumption.

The ACT 4445 series performs the front-end analog function of inputting and outputting data through a transformer to the MIL-STD-1553 data bus.

Design of this transceiver reflects particular attention to active filter performance. This results in low bit and word error rate with superior waveform purity and minimal zero crossover distortion. Efficient transmitter electrical and thermal design provides low internal power dissipation and heat rise at high as well as low duty cycles.

TRANSMITTER


The Transmitter section accepts bi-phase TTL data at the input and when coupled to the data bus with a 1.4:1 transformer the data bus signal produced is 7.5 Volts typical P-P at Point A (See Figure 3 or 4). When both DATA and DATA inputs are held low or high, the transmitter output becomes a high impedance and is "removed" from the line. In addition, an overriding "INHIBIT" input provides for the removal of the transmitter output from the line. A logic "1" signal applied to the "INHIBIT" takes priority over the condition of the data inputs and disables the transmitter (See Transmitter Logic Waveform, Figure 1). The Transmitter may be safely operated for an indefinite period with the bus (Point A) short circuited at 100% duty cycle.

RECEIVER

The Receiver section accepts bi-phase differential data at the input and produces two TTL signals at the output. The outputs are DATA and \overline{DATA} , and represent positive and negative excursions of the input beyond a pre-determined threshold (See Receiver Logic Waveforms - Figure 2).

The pre-set internal thresholds will detect data bus signals, Point A Figure 3 or 4, exceeding 1.20 Volts P-P and reject signals less than 0.6 Volts P-P when used with a transformer (See Figure 3 or 4 for transformer data and typical connection).

A low level at the RX Strobe input inhibits the DATA and \overline{DATA} outputs. If unused RX Strobe is internally pulled high.

ABSOLUTE MAXIMUM RATINGS

Operating Case Temperature	-40° C to $+85^{\circ}$ C
Storage Case Temperature	-65°C to +150°C
Power supply voltage VCC VEE VL	-0.3 to +18 VDC +0.3 to -18 VDC -0.3 to +7.0 VDC
Logic Input Voltage	-0.3 V to +5.5 VDC
Receiver Differential Input	±40 V
Receiver Input Voltage (Common Mode)	±10V
Driver Peak Output Current	200 mA
Total Package Power Dissipation over the Full Operating Case Temperature Range	2.5 Watts
Maximum Junction to Case Temperature	2.5°C
Thermal Resistance – Junction to Case	1°C/W

ELECTRICAL CHARACTERISTICS – DRIVER SECTION 2/3/ INPUT CHARACTERISTICS, TX DATA IN OR TX DATA IN

Parameter	Condition	Symbol	Min	Тур	Max	Unit
"0" Input Current	$V_{IN} = 0.4 V$	I _{ILD}	-	-0.1	-0.2	mA
"1" Input Current	V _{IN} = 2.7 V	I _{IHD}	-	1	40	μΑ
"0" Input Voltage	-	V _{ILD}	-	-	0.7	V
"1" Input Voltage	-	V _{IHD}	2.0	-	-	V

INHIBIT CHARACTERISTICS

"0" Input Current	VIN = 0.4 V	I _{ILI}	-	-0.2	-0.4	mA
"1" Input Current	Vin = 2.7V	I _{IHI}	-	1.0	40	μΑ
"0" Input Voltage		V _{ILI}	-	-	0.7	V
"1" Input Voltage		V _{IHI}	2	-	-	V
Delay from TX inhibit, $(0\rightarrow 1)$ to inhibited output	From mid point inhibit to ±1.2V	t _{DXOFF}	-	300	500	nS
Delay from TX inhibit, $(1 \rightarrow 0)$ to active output	Point A, See Figure 3 or 4	t _{DXON}	-	300	500	nS
Differential output noise, inhibit mode		V _{NOI}	-	0.8	10	mVP-P
Differential output impedance (inhibited) (Note 1) See Figure 3 or 4.	Point A	Z _{OI}	2K	-	-	Ω

OUTPUT CHARACTERISTICS

Differential output level	Figure	Vo	6	7.5	9	VP-P
Rise and Fall times (10% to 90% at Point A output)	3 or 4 Point A	tr & tf	100	160	300	nS
Output offset, Figure 5, 2.5μ S after midpoint crossing of the parity bit of the last word of a 660 μ S message		Vos	-	-	± 90	mVрк
Delay from 50% point of TX DATA or TX DATA input to zero crossing of differential signal		tdxt	-	100	200	nS

ELECTRICAL CHARACTERISTICS – RECEIVER SECTION

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Differential Receiver Input Voltage Range (See Figure 3 or 4, Point A)	TXFMR 1.4:1	Vidr	-	-	40	VP-P
Common Mode Rejection Ratio (Note 3)		CMRR	45	-	-	dB
"1" State – Rx Data or Rx Data Output	Іон = -0.4 mA	Voh	2.5	3.7	-	V
"0" State – Rx Data or Rx Data Output	IOI = 4 mA	Vol	-	0.35	0.5	V
Delay (average) from Differential Input Zero Crossings to RX Data and RX DATA Output 50% Points		tDXT	-	270	400	nS
Input Threshold Voltage (referred to the bus)	100KHz-1MHz	Vth	0.60	0.75	1.20	VP-P

STROBE CHARACTERISTICS (LOGIC "0" INHIBITS OUTPUT)

"0" Input Current	$V_{S} = 0.4 V$	I _{IL}	-	-0.1	-0.2	mA
"1" Input Current	$V_{S} = 2.7 V$	I _{IH}	-	1	+40	μΑ
"0" Input Voltage	-	V _{IL}	-	-	0.7	V
"1" Input Voltage	-	V _{IH}	2.0	-	-	V
Strobe Delay (Turn-on or Turn-off)	-	t _{SD}	-	50	100	nS

POWER DATA

POWER SUPPLY CURRENTS – PER CHANNEL – SEE FIGURE 6

Duty Cycle	Condition	Symbol	Тур	Max	Unit
Transmitter Standby		I _{CC} I _{EE} I _L	0 12 18	1 16 30	
25%		I _{CC} I _{EE} I _L	45 12 18	50 20 30	mA
50%		I _{CC} I _{EE} I _L	90 12 18	100 20 30	mA
100%		I_{CC} I_{EE} I_L	180 12 18	200 20 30	

RECOMMENDED POWER SUPPLY VOLTAGE RANGE

Vcc	+14.25 to +15.75 Volts
VEE	-14.25 to -15.75 Volts
VL	+4.75 to +5.25 Volts

Notes: 1. Power on or off, measured from 75KHz to 1MHz at Point A and transformer self impedance of 3KΩ minimum at 1MHz.
2. Power Supplies: ±15VDC ±0.75VDC & +5VDC ±0.25VDC, bypassed by 10 µF (Tantalum recommended) Capacitor minimum. All measurements & specifications apply over the temperature range of -40°C to +85°C (case temperature) unless otherwise specified.

- 3. When measured as shown per Figure 3 or 4 with \pm 10VPK, line to ground, DC to 2MHz
- 4. Typical power is measured with VBUS at Point A = 7.5VP-P

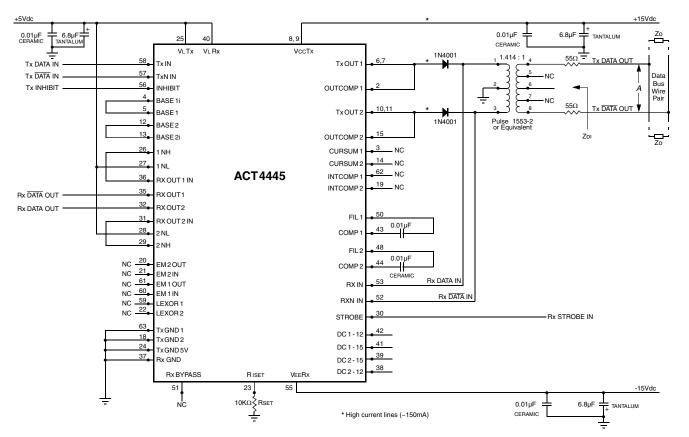


FIGURE 3 – TYPICAL CONNECTIONS – DATABUS INTERFACE, DIRECT COUPLED STUB, NORMALLY HIGH RECEIVER IDLE STATE

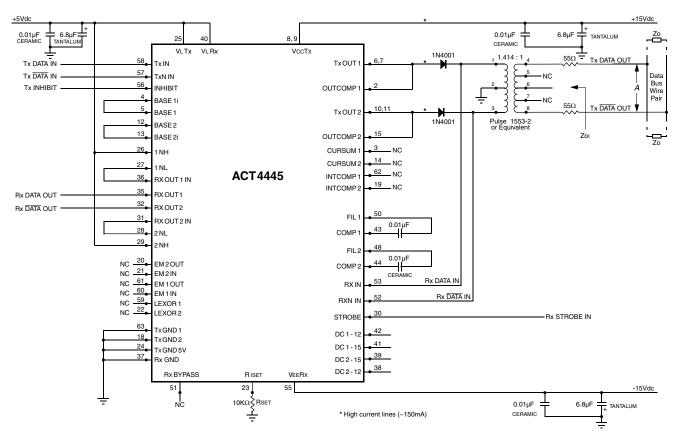
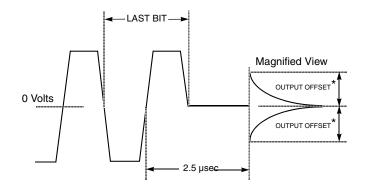
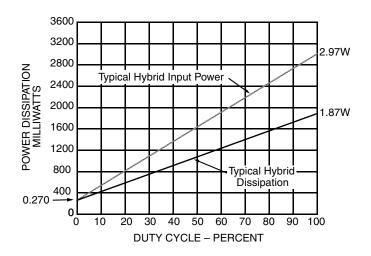




FIGURE 4 – TYPICAL CONNECTIONS – DATABUS INTERFACE, DIRECT COUPLED STUB, NORMALLY LOW RECEIVER IDLE STATE

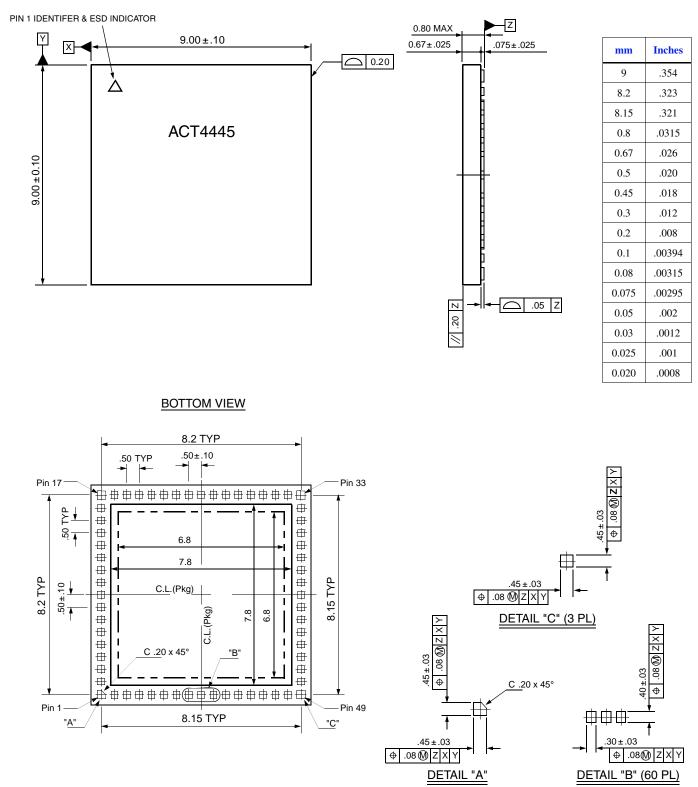
*Offset measured at Point A in Figure 3 or 4

FIGURE 5 – TRANSMITTER (TX) OUTPUT WAVE FORM

Note: VCC= +15VDC, VEE = -15VDC, VL= +5VDC, Transformer ratio 1.4:1, VBUS (Figure 3 or 4 - Point A) at 7.5VP-P.

FIGURE 6 – TYPICAL HYBRID POWER DISSIPATION vs DUTY CYCLE

Pin #	Function	Pin #	Function
1	NC	33	NC
2	OUTCOMP 1	34	NC
3	CURSUM1	35	RXOUT 1
4	BASE 1i	36	RXOUT 1 IN
5	BASE 1	37	RX GND
6	TXOUT 1*	38	DC2 - 12
7	TXOUT 1*	39	DC2 - 15
8	VccTx*	40	VL RX
9	VccTx*	41	DC1 - 15
10	TXOUT 2*	42	DC1 - 12
11	TXOUT 2*	43	COMP 1
12	BASE 2	44	COMP 2
13	BASE 2i	45	NC
14	CURSUM 2	46	NC
15	OUTCOMP 2	47	NC
16	NC	48	FIL 2
17	NC	49	NC
18	TX GND 2	50	FIL 1
19	INTCOMP 2	51	RXBYPASS
20	EM2 OUT	52	RXN IN
21	EM2 IN	53	RX IN
22	IEXOR 2	54	NC
23	R ISET	55	VEERX
24	TX GND 5V	56	INHIBIT
25	VL TX	57	TXN IN
26	1NH	58	TX IN
27	1NL	59	IEXOR 1
28	2 NL	60	EM1 IN
29	2 NH	61	EM1 OUT
30	STROBE	62	INTCOMP 1
31	RXOUT 2 IN	63	TX GND 1
32	RXOUT 2	64	NC


PACKAGE PIN OUT DESCRIPTION - ACT4445

NC = No Connect

* High Current Line (~100mA)

PACKAGE DESCRIPTION

TOP VIEW

Note 1. Dimensions in millimeters

CONFIGURATIONS AND ORDERING INFORMATION

Model No.	Screening Level	Receiver and Transmitter Data Levels	Package
ACT4445	Industrial Temperature	User Configurable	64 Bump Chip
	-40°C to +85°C	(See Figure 3 & 4)	Carrier

PLAINVIEW, NEW YORK Toll Free: 800-THE-1553 Fax: 516-694-6715

SE AND MID-ATLANTIC Tel: 321-951-4164 Fax: 321-951-4254 **INTERNATIONAL** Tel: 805-778-9229 Fax: 805-778-1980

WEST COAST Tel: 949-362-2260 Fax: 949-362-2266 **NORTHEAST** Tel: 603-888-3975 Fax: 603-888-4585

CENTRAL Tel: 719-594-8017 Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused