# Standard Products RadHard-by-Design RHD5900 Quad Operational Amplifier

www.aeroflex.com/RHDseries

April 20, 2012



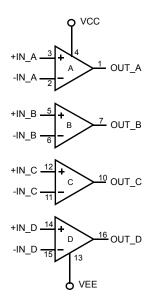
passion for performa

## **FEATURES**

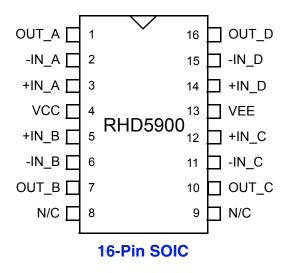
- □ Single power supply operation (3.3V to 5.0V) or dual power supply operation ( $\pm 1.65$  to  $\pm 2.5$ V)
- □ Radiation performance
  - Total dose:
  - ELDRS Immune
  - SEL Immune

- >1Mrad(Si); Dose rate = 50 300 rads(Si)/s
- $>100 \text{ MeV-cm}^2/\text{mg}$ age  $>10^{14} \text{ neutrons/cm}^2$
- Neutron Displacement Damage >
  Rail-to-Rail input and output range
- □ Short Circuit Tolerant
- □ Full military temperature range
- Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic SOIC
  - 16-pin, .411"L x .293"W x .090"Ht
  - Weight 0.8 grams max

□ Aeroflex Plainview's Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.


## **GENERAL DESCRIPTION**

Aeroflex's RHD5900 is a radiation hardened, single supply, quad operational amplifier in a 16-pin SOIC package. The RHD5900 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5900 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5900 is ideal for demanding military and space applications.


## **ORGANIZATION AND APPLICATION**

The RHD5900 amplifiers are capable of rail-to-rail input and outputs. Performance characteristics listed are for general purpose operational 5V CMOS amplifier applications. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events to above 100 MeV-cm<sup>2</sup>/mg. Total dose degradation is minimal to above 1Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid  $10^{14}$  neutrons per cm<sup>2</sup> range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependant.







## FIGURE 2: PACKAGE PIN-OUT

### Notes:

1. Package and lid are electrically isolated from signal pads.

2. It is recommended that N/C or no connect pins (pins 8 and 9) and lid be grounded. This eliminates or minimizes any ESD or static buildup.

## **ABSOLUTE MAXIMUM RATINGS**

| Parameter                                         | Range                | Units |
|---------------------------------------------------|----------------------|-------|
| Case Operating Temperature Range                  | -55 to +125          | °C    |
| Storage Temperature Range                         | -65 to +150          | °C    |
| Junction Temperature                              | +150                 | °C    |
| Supply Voltage VCC - VEE                          | +6.0                 | V     |
| Input Voltage                                     | Vcc +0.4<br>Vee -0.4 | V     |
| Lead Temperature (soldering, 10 seconds)          | 300                  | °C    |
| Thermal Resistance, Junction to Case, $\Theta$ jc | 7                    | °C/W  |
| ESD Rating                                        | 2.0                  | KV    |
| Power @25°C                                       | 200                  | mW    |

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

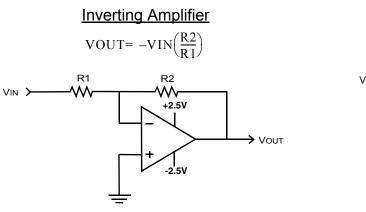
## **RECOMMENDED OPERATING CONDITIONS**

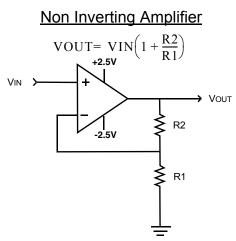
| Symbol | Parameter               | Typical    | Units |
|--------|-------------------------|------------|-------|
| +Vcc   | Power Supply Voltage    | 3.3 to 5.0 | V     |
| Vсм    | Input Common Mode Range | VCC to VEE | V     |

## **ELECTRICAL PERFORMANCE CHARACTERISTICS**

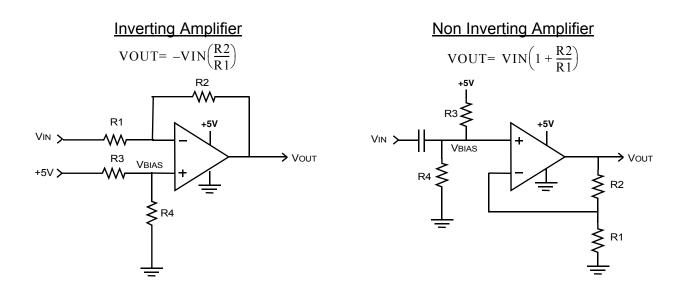
(Tc = -55°C TO +125°C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

| Parameter                       | Symbol         | Conditions                        | Min   | Тур | Max   | Units |
|---------------------------------|----------------|-----------------------------------|-------|-----|-------|-------|
| Input Offset Voltage            | Vos            |                                   | -2    |     | 2     | mV    |
| Input Offset Current            | los            | Tc = +25°C, -55°C                 | -100  |     | 100   | рА    |
|                                 |                | Tc = +125°C                       | -500  |     | 500   |       |
|                                 | 1-             | Tc = +25°C, -55°C                 | -100  |     | 100   | pА    |
| Input Bias Current              | lв             | Tc = +125°C                       | -1000 |     | 1000  |       |
| Input Offset TempCo <u>2</u> /  | VIOST          |                                   |       |     | 10    | uV/C  |
| Common Mode Rejection Ratio     | CMRR           |                                   | 70    |     |       | dB    |
| Power Supply Rejection Ratio    | PSRR           |                                   | 70    |     |       | dB    |
|                                 | Mou            | ROUT=3.6K to GND, Tc=+25°C, -55°C | 4.9   |     |       | V     |
| Output Voltage High             | Vон -          | ROUT=3.6K to GND, Tc=+125°C       | 4.8   |     |       |       |
|                                 | Vol            | ROUT=3.6K to Vcc, Tc=+25°C, -55°C |       |     | 0.1   | V     |
| Output Voltage Low              |                | ROUT=3.6K to Vcc, Tc=+125°C       |       |     | 0.125 |       |
| Short Circuit                   | lo(sink)       | Vout to Vcc                       | -63   |     |       | mA    |
| Output Current <u>2</u> /       | IO(SOURCE)     | VOUT to VEE                       |       |     | 45    | mA    |
| Slew Rate                       | SR             | R∟ = 8K, Gain = 1                 | 2.5   |     |       | V/uS  |
| Open Loop Gain <u>2</u> /       | Aol            | No Load                           | 90    |     |       | dB    |
| Unity Gain Bandwidth <u>2</u> / | UGBW           | RL = 10K                          | 4     | 6.5 |       | MHz   |
| Quiescent Supply Current        | Iccq           | No Load                           |       |     | 5.5   | mA    |
| Channel Separation 2/           |                | RL = 2K, f = 1.0KHz               | 90    |     |       | dB    |
| Input-Referred Voltage Noise 2/ | e <sub>n</sub> | F = 5 kHz                         |       | 15  |       | nV/   |
| Phase Margin <u>2</u> /         | $\Phi_{m}$     |                                   | 30    |     |       | Deg   |


Notes:

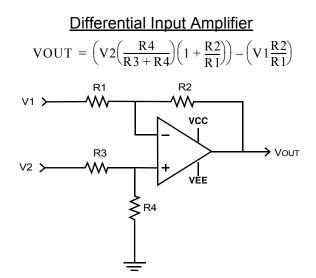

1/ Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C.

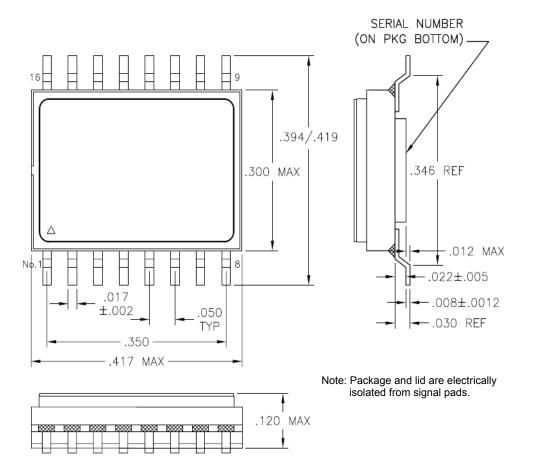
2/ Not Tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.


# **RHD5900 QUAD OPERATIONAL AMPLIFIER APPLICATION NOTES**

## **APPLICATION NOTE 1: DUAL POWER SUPPLY AMPLIFIER**







## **APPLICATION NOTE 2: SINGLE POWER SUPPLY AMPLIFIER**



Note: For VOUT DC @ mid range of common mode voltage range, VBIAS = 2.5/(1+R2/R1), VBIAS = +5\*R4/(R3+R4)

## **APPLICATION NOTE 3: DIFFERENTIAL INPUT AMPLIFIER**





## FIGURE 3: PACKAGE OUTLINE

## **ORDERING INFORMATION**

| Model          | DLA SMD #       | Screening                                                                                                                                 | Package                |  |
|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| RHD5900-7      | -               | Commercial Flow, +25°C testing only                                                                                                       |                        |  |
| RHD5900-S      | -               | Military Temperature, -55°C to +125°C<br>Screened in accordance with the individual Test Methods<br>of MIL-STD-883 for Space Applications |                        |  |
| RHD5900-201-1S | 5962-1024101KXC | DLA SMD Pending                                                                                                                           | 16-pin<br>SOIC Package |  |
| RHD5900-201-2S | 5962-1024101KXA | DEA SIMD Fending                                                                                                                          |                        |  |
| RHD5900-901-1S | 5962H1024101KXC | DLA SMD and Radiation Certification Pending                                                                                               |                        |  |
| RHD5900-901-2S | 5962H1024101KXA |                                                                                                                                           |                        |  |

### EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

**EXPORT WARNING:** 

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)



SCD5900 Rev E 4/20/12