Standard Products

ACT8512 48-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

www.aeroflex.com/mux

November 14, 2008

FEATURES

- □ 48 channels provided by six 16-channel multiplexers
- Radiation performance

- Total dose: 150 krads(Si), Dose rate = 50 - 300 rads(Si)/s

- SEU: Immune up to 90 MeV-cm²/mg - SEL: Immune by process design

- □ Full military temperature range
- □ Low power consumption < 90mW
- □ One address bus (A0-3) and three enable lines afford flexible organization
- □ All channel inputs protected by ±20V nominal transorbs
- □ Fast access time < 500ns typical
- □ Break-Before-Make switching
- □ High analog input impedance (power on or off)
- Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic
 - 96 leads, 1.32"Sq x 0.20"Ht quad flat pack
 - Typical Weight 15 grams
- □ DSCC 5962-09203 SMD pending

Note: Aeroflex Plainview does not currently have a DSCC certified Radiation Hardened Assurance Program.

GENERAL DESCRIPTION

Aeroflex's ACT8512 is a radiation tolerant, 48 channel multiplexer MCM (multi-chip module) with electrostatic discharge (ESD) protection on all channel inputs.

The ACT8512 has been specifically designed to meet exposure to radiation environments. The multiplexer is available in a 96 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534, the ACT8512 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION

The ACT8512 consists of six 16 channel multiplexers arranged as shown in the Block Diagram. The ACT8512 design is inherently radiation tolerant.

The ACT8512 consists of forty-eight (48) channels addressable by bus $A_0 \sim A_3$ in three 16 channel blocks, each block enabled separately. Each block connects the addressed channel to two outputs, "Output" and "Current". This technique enables selecting and reading a remote resistive sensor without the MUX resistance being part of the measurement. For grounded sensors, this is done by passing current to the sensor by means of the "Current" pin and reading the resultant voltage (proportional to the sensor resistance) at the "Output" pin.

ACT8512 48 - CHANNEL ANALOG MUX BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS 1/

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	C
Storage Temperature Range	-65 to +150	C
Supply Voltage +VEE (Pin 44) -VEE (Pin 46) VREF (Pin 48)	+20 -20 +7.5	V V V
Digital Input Overvoltage VEN (Pins 5, 91, 92), VA (Pins 1, 3, 93, 95)	<vref +0.5<br="">>GND -0.5</vref>	V V
Analog Input Over Voltage Vs	±18V	V

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS 1/

Symbol	Parameter	Typical	Units
+VEE	+15V Power Supply Voltage	+15.0	V
-VEE	-15V Power Supply Voltage	-15.0	V
VREF	Reference Voltage	+5.00	V
VAL	Logic Low Level	+0.8	V
VAH	Logic High Level	+4.0	V

DC ELECTRICAL PERFORMANCE CHARACTERISTICS $\underline{1}$ / (Tc = -55°C to +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V - Unless otherwise specified)

Parameter	Symbol	Conditions		Max	Units
Supply Current	+lee	Ven(0-47) = Va(0-3) = 0		3	mA
	-IEE		-3	0	mA
	+ISBY	VEN(0-47) = 4V, VA(0-3) = 0 <u>7</u> /	0	3	mA
	-ISBY		-3	0	mA
Address Input Current	IAL(0-3)	VA = 0V	-6	6	μΑ
	Іан(0-3)	VA = 5V	-6	6	μΑ
Enable Input Current	IENL(0-15)	VEN(0-15) = 0V	-2	2	μΑ
	IENH(0-15)	VEN(0-15) = 5V	-2	2	μΑ
	IENL(16-31)	VEN(16-31) = 0V	-2	2	μΑ
	IENH(16-31)	VEN(16-31) = 5V	-2	2	μΑ
	IENL(32-47)	VEN(32-47) = 0V	-2	2	μΑ
	IENH(32-47)	VEN(32-47) = 5V	-2	2	μΑ

^{1/} All measurements are made with respect to ground.

^{1/} Power Supply turn-on sequence shall be as follows: -VEE, VREF, followed by +VEE.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/ (continued)

(Tc = -55°C to +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V - Unless otherwise specified)

Parameter	Symbol	Conditions		Min	Max	Units
Positive Input Leakage	ISOFFOUTPUT	VIN = +10V, VEN = 4V, output and all unused MUX inputs			+1000	nA
Current CH0-CH47 +ISOFFCURRENT		under test = -10V 2/ 3/		-100	+1000	nA
Negative Input Leakage -ISOFFOUTPUT		VIN = -10V, VEN = 4V, output and all unused MUX inputs			+1000	nA
Current CH0-CH47	-ISOFFCURRENT	under test = $+10V$ $\underline{2}$, $\underline{3}$ /		-100	+1000	nA
Output Leakage Current OUTPUTS	+IDOFFOUTPUT	VOUT = +10V, VEN = 4V, output and all unused M	UX	-100	+100	nA
(pins 25, 70 & 68) CURRENTS (pins 67 & 69)	+IDOFFCURRENT	inputs under test = -10V <u>3</u> /, <u>4</u> /		-100	+100	nA
Output Leakage Current OUTPUTS	-IDOFFOUTPUT	VOUT = -10V, VEN = 4V, output and all unused MUX inputs under test = +10V $\underline{3}$ /, $\underline{4}$ /		-100	+100	nA
(pins 25, 70 & 68) CURRENTS (pins 67 & 69)	-IDOFFCURRENT			-100	+100	nA
Input Clamped Voltage CH0 - CH47	+VCLMP	VEN = 4V, all unused MUX inputs under test are open. 3/ +25℃ +125℃ -55℃		18.0 18.0 17.5	23.0 23.5 22.5	>>>
Input Clamped Voltage CH0 - CH47	-VCLMP		+25℃ +125℃ -55℃		-18.0 -18.0 -17.5	>>>
Switch ON Resistance OUTPUTS	RDS(ON)(0-47) _A	VIN = +15V, VEN = 0.8V, IOUT = -1mA 2/, 3/, 5/		200	1000	Ω
(pins 25, 70 & 68) <u>6</u> /	RDS(ON)(0-47) _B	VIN = +5V, VEN = 0.8V, IOUT = -1mA $2/$, $3/$, $5/$		200	1500	Ω
	RDS(ON)(0-47) _C VIN = -5V, VEN = 0.8V, IOUT = +1mA $\frac{2}{3}$, $\frac{5}{3}$			200	2500	Ω
Switch ON Resistance CURRENTS	RDS(ON)(0-47) _A	VIN = +15V, VEN = 0.8V, IOUT = -1mA 2/, 3/, 5/		200	1000	Ω
(pins 26, 67 & 69) <u>6</u> /	RDS(ON)(0-47) _B	VIN = +5V, VEN = 0.8V, IOUT = -1mA 2/, 3/, 5/		200	1500	Ω
	RDS(ON)(0-47) _C	VIN = -5V, $VEN = 0.8V$, $IOUT = +1mA2/, 3/, 5/$		200	2500	Ω

- 1/ Measure inputs sequentially. Ground all unused inputs of the device under test. VA is the applied input voltage to the address lines A(0-3).
- 2/ VIN is the applied input voltage to the input channels CH0-CH47.
 3/ VEN is the applied input voltage to the enable lines En(0-15), En(16-31) and En(32-47).
- 4/ Vout is the applied input voltage to the output lines OUTPUT(0-15), OUTPUT(16-31), OUTPUT(32-47), CURRENT(0-15), CURRENT(16-31) and CURRENT(32-47).
- 5/ Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6/ The ACT8512 cannot be operated with analog inputs from -15 to -5 volts.
- 7/ Not tested, guaranteed to the specified limits.

SWITCHING CHARACTERISTICS

(Tc = -55°C to +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V -- Unless otherwise specified)

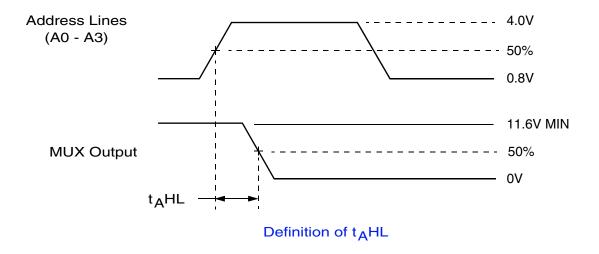
Parameter	Symbol	Conditions	Min	Max	Units
Switching Test MUX	t _A HL	RL = $10K\Omega$, CL = $50pF$	10	1000	ns
	t _A LH		10	1000	ns
	t _{ON} EN	$RL = 1K\Omega$, $CL = 50pF$	10	1000	ns
	t _{OFF} EN		10	1000	ns

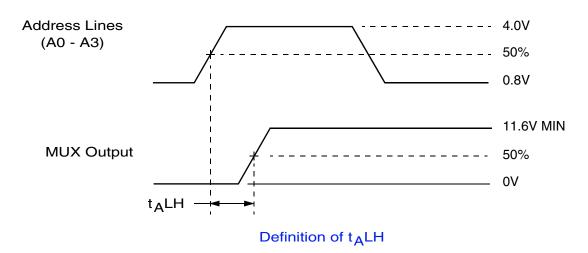
TRUTH TABLE (CH0 – CH15)

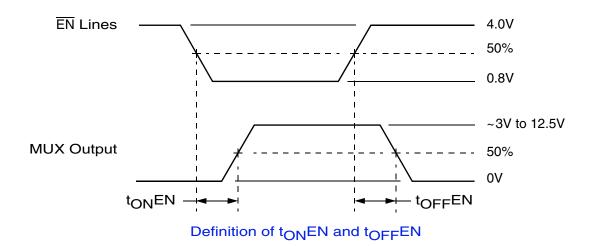
A3	A2	A1	A0	EN(0-15)	"ON" CHANNEL 1/
Х	Χ	Χ	Χ	Н	NONE
L	L	L	L	L	CH0
L	L	L	Н	L	CH1
L	L	Н	L	L	CH2
L	L	Η	Н	L	CH3
L	Ι	L	L	L	CH4
L	Н	L	Н	L	CH5
L	Η	Η	L	L	CH6
L	Н	Н	Н	L	CH7
Н	L	L	L	L	CH8
Н	L	L	Н	L	CH9
Н	L	Н	L	L	CH10
Н	L	Н	Н	L	CH11
Н	Н	L	L	L	CH12
Н	Н	L	Н	L	CH13
Н	Н	Н	L	L	CH14
Н	Н	Н	Н	L	CH15

^{1/} Between CH0-15 and OUTPUT (0-15) and CURRENT (0-15).

TRUTH TABLE (CH16 – CH31)


A3	A2	A 1	Α0	EN(16-31)	"ON" CHANNEL 1/
Х	Х	Х	Х	Н	NONE
L	L	L	L	L	CH16
L	L	L	Н	L	CH17
L	L	Н	L	L	CH18
L	L	Н	Н	L	CH19
L	Н	L	L	L	CH20
L	Н	L	Н	L	CH21
L	Н	Н	L	L	CH22
L	Н	Н	Н	L	CH23
Н	L	L	L	L	CH24
Н	L	L	Н	L	CH25
Н	L	Н	L	L	CH26
Н	L	Н	Н	L	CH27
Н	Н	L	L	L	CH28
Н	Н	L	Н	L	CH29
Н	Н	Н	L	L	CH30
Н	Н	Н	Н	L	CH31

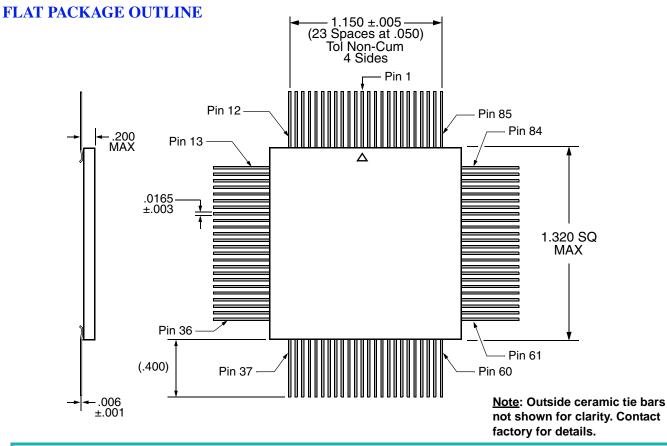

^{1/} Between CH16-31 and OUTPUT (16-31) and CURRENT (16-31).


TRUTH TABLE (CH32 - CH47)

A3	A2	A1	A0	EN(32-47)	"ON" CHANNEL 1/
Х	Х	Х	Χ	Н	NONE
L	L	L	L	L	CH32
L	L	L	Н	L	CH33
L	L	Н	L	L	CH34
L	L	Н	Н	L	CH35
L	Н	L	L	L	CH36
L	Н	L	Н	L	CH37
L	Н	Н	L	L	CH38
L	Н	Н	Ι	L	CH39
Н	L	L	L	L	CH40
Н	L	L	Н	L	CH41
Н	L	Н	L	L	CH42
Н	L	Н	Н	L	CH43
Н	Н	L	L	L	CH44
Н	Н	L	Н	L	CH45
Н	Н	Н	L	L	CH46
Н	Н	Н	Н	L	CH47

^{1/} Between CH32-47 and OUTPUT (32-47) and CURRENT (32-47) SCD8512 Rev D 11/14/08

NOTE: f = 10KHz, Duty cycle = 50%.


PIN NUMBERS & FUNCTIONS

	ACT8512 – 96 Leads Ceramic QUAD Flat Pack							
Pin#	Function	Pin#	Function	Pin#	Function			
1	A2	33	CH11	65	CH33			
2	NC	34	GND	66	CH32			
3	A3	35	CH12	67	Output I(32-47)			
4	NC	36	GND	68	Output V(32-47)			
5	EN 0-15	37	CH13	69	Output I(16-31)			
6	NC	38	GND	70	Output V(16-31)			
7	CH0	39	CH14	71	GND			
8	GND	40	GND	72	GND			
9	CH1	41	CH15	73	CH31			
10	GND	42	GND	74	CH30			
11	CH2	43	NC	75	CH29			
12	GND	44	+VEE	76	CH28			
13	CH3	45	NC	77	CH27			
14	GND	46	-VEE	78	CH26			
15	CH4	47	NC	79	CH25			
16	GND	48	VREF	80	CH24			
17	CH5	49	NC	81	CH23			
18	GND	50	CASE GND	82	CH22			
19	CH6	51	CH47	83	CH21			
20	GND	52	CH46	84	CH20			
21	CH7	53	CH45	85	CH19			
22	GND	54	CH44	86	CH18			
23	GND	55	CH43	87	CH17			
24	GND	56	CH42	88	CH16			
25	Output V(0-15)	57	CH41	89	GND			
26	Output I(0-15)	58	CH40	90	GND			
27	CH8	59	CH39	91	EN 32-47			
28	GND	60	CH38	92	EN 16-31			
29	CH9	61	CH37	93	A0			
30	GND	62	CH36	94	NC			
31	CH10	63	CH35	95	A1			
32	GND	64	CH34	96	NC			

NOTE: It is recommended that all "NC" or "no connect pin" be grounded. This eliminates or minimizes any ESD or static buildup.

ORDERING INFORMATION

Model Number	Screening	DSCC SMD #	Package
ACT8512-S	Military Temperature, -55°C to +125°C, Screened in accordance with MIL-PRF-38534, Class K	NA	QUAD Flat Pack
ACT8512-7	Commercial Flow, +25°C testing only		
ACT8512-201-1S	In accordance with DSCC SMD	5962-0920301KXC	

EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

EXPORT WARNING:

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

PLAINVIEW, NEW YORK INTERNATIONAL Toll Free: 800-THE-1553

Tel: 805-778-9229

WEST COAST

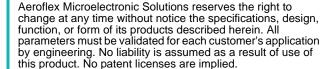
NORTHEAST Tel: 603-888-3975 Fax: 603-888-4585

Fax: 516-694-6715

Fax: 321-951-4254

Fax: 805-778-1980

CENTRAL


SE AND MID-ATLANTIC Tel: 321-951-4164

Tel: 949-362-2260 Fax: 949-362-2266

Tel: 719-594-8017 Fax: 719-594-8468

www.aeroflex.com

info-ams@aeroflex.com

A passion for performance.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused