# **Standard Products**

## **DRS4485 Dual RS485 Interface Transceiver**

### **Radiation Tolerant**

www.aeroflex.com/RadHard June 1, 2011





#### **FEATURES**

- Radiation Performance
  - Total dose  $\geq 100 \text{ krad (Si)}$
- Designed for RS485 and RS422 Interface Applications
- □ Single +5V supply
- □ +5V to -7V Bus common mode range source output
- Driver maintains high impedance in three-state or with the power off
- □ Combined Impedance of a driver output and receiver allows up to 32 transceivers on the bus
- □ 200 mV typical input hysteresis
- Serial data rate 500KHz maximum
- □ Voltage source output
- □ Receiver output Hi for VIN Diff = 0V
- < 5ns skew between BUS and BUSN complementary outputs
  </p>
- □ 0.63"sq. x 0.125"ht, 18 lead, hermetic flat package
- Monolithic construction
- Designed for commercial, industrial and aerospace applications
- □ Plainview is a Class H & K MIL-PRF-38534 manufacturer
- Aeroflex Plainview's Radiation Hardness Assurance Plan is Certified by DLA Land and Maritime.

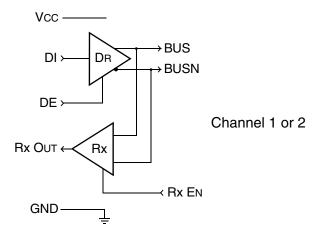



FIGURE 1 – SCHEMATIC

#### **GENERAL DESCRIPTION**

The Aeroflex-Plainview DRS4485 is a monolithic dual bus/line transceiver designed for multipoint data transmission standard RS485 applications. The DRS4485 meets TIA/EIA -485 requirements. The receiver has a fail-safe feature which guarantees a high output state when the BUS is open or shorted.

### **ABSOLUTE MAXIMUM RATINGS**

| Operating Case Temperature  | -55•C to +125•C           |
|-----------------------------|---------------------------|
| Storage Case Temperature    | -65•C to +150•C           |
| Power Supply Voltages (VCC) | +12VDC                    |
| Control Input Voltage       | -0.5 VDC to Vcc + 0.5 VDC |
| Driver Input Voltage        | -0.5 VDC to Vcc + 0.5 VDC |
| Driver Output Voltage       | ±5V                       |
| Receiver Input Voltage      | ±5V                       |
| Receiver Output Voltages    | -0.5 VDC to Vcc + 0.5 VDC |

## ELECTRICAL CHARACTERISTICS 1/2/

| Parameter                                                                          | Condition                | Symbol                   | Min  | Тур  | Max  | Unit |
|------------------------------------------------------------------------------------|--------------------------|--------------------------|------|------|------|------|
| Differential driver output voltage (unloaded)                                      | $I_O = 0$                | $V_{OD1}$                | 2.5  | 3.0  | 5    | Vp-p |
| Differential driver output voltage (with load)                                     |                          | $V_{\mathrm{OD2}}$       | 2.5  | 3.0  | 5    | Vp-p |
| Change in magnitude of driver differential output Voltage for complementary states | See Figure 2             | $\Delta V_{\mathrm{OD}}$ | -    | -    | 0.2  | Vp-p |
| Driver common mode output voltage                                                  |                          | $V_{OC}$                 | -    | 2.55 | 3    | V    |
| Change in magnitude of driver common-mode output Voltage for complementary states  |                          | $\Delta   V_{OC}$        | -    | -    | 0.2  | V    |
| Input high voltage                                                                 | <del></del>              | $V_{IH}$                 | 2.4  | -    | -    | V    |
| Input low voltage                                                                  | DE, DI, RE               | $V_{IL}$                 |      | -    | 0.8  | V    |
| Input current                                                                      |                          | $I_{IN}$                 |      | ±1   | ±2   | μΑ   |
| Differential input threshold voltage for receiver                                  | -6.5V ≤ VCM ≤ +5V        | $V_{TH}$                 | -0.5 | -0.2 | -0.1 | V    |
| Receiver input hysteresis <u>3</u> /                                               | $V_{CM} = 0$             | $\Delta V_{TH}$          | -    | 160  | 400  | mV   |
| Receiver output high voltage                                                       | $I_{O} = -0.4 \text{mA}$ | V <sub>OH</sub>          | 4.0  | -    | -    | V    |
| Receiver output low voltage                                                        | $I_O = 0.4 \text{mA}$    | V <sub>OL</sub>          | -    | -    | 0.5  | V    |
| Receiver input differential resistance <u>3</u> /                                  | -                        | RINDIFF                  | 30K  | -    | -    | Ω    |
| Receiver input common-mode resistance <u>3</u> /                                   | -                        | RIN <sub>CM</sub>        | 8K   | -    | -    | Ω    |
| Driver short-circuit current                                                       | -                        | I <sub>OS</sub>          | 50   | 80   | 140  | mA   |
| Receiver short-circuit current                                                     | VOH to GND or VOL to Vcc | I <sub>OSR</sub>         | 7    | 50   | 85   | mA   |

## STATIC DC POWER SUPPLY CURRENTS

|                                                                                                                                   | Input    |    |                 | Output         |                  |         |     |     |      |           |          |          |          |  |  |  |  |  |  | <b>Channel Conditions</b> |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|----|-----------------|----------------|------------------|---------|-----|-----|------|-----------|----------|----------|----------|--|--|--|--|--|--|---------------------------|--|--|--|
| C                                                                                                                                 | ondition | 18 | Cond            | itions         | Sym              | Min     | Тур | Max | Unit | Channel 1 |          | Chai     | nnel 2   |  |  |  |  |  |  |                           |  |  |  |
| DE                                                                                                                                | DI       | RE | Output<br>State | Output<br>Load | •                |         |     |     |      | Driver    | Receiver | Driver   | Receiver |  |  |  |  |  |  |                           |  |  |  |
| 0V                                                                                                                                | X        | 5V | HiZ             | X              | I <sub>CC1</sub> | -       | 10  | 16  | mA   | Disabled  | Disabled | Disabled | Disabled |  |  |  |  |  |  |                           |  |  |  |
| 5V                                                                                                                                | X        | 0V | LoZ             | NL             | $I_{CC2}$        | -       | 29  | 40  | mA   | Enabled   | Enabled  | Disabled | Disabled |  |  |  |  |  |  |                           |  |  |  |
| 5V                                                                                                                                | X        | 0V | LoZ             | 60 Ω           | $I_{CC3}$        | -       | 50  | 65  | mA   | Enabled   | Enabled  | Disabled | Disabled |  |  |  |  |  |  |                           |  |  |  |
| DE=Driver In, DI=Driver In, RE=Receiver En X=HiLo, 0V=GND, 5V=V <sub>DC</sub> , HiZ=high impedance, LoZ=low impedance, NL=No Load |          |    |                 |                |                  | No Load |     |     |      |           |          |          |          |  |  |  |  |  |  |                           |  |  |  |

### SWITCHING CHARACTERISTICS 1/2/

| Parameter                      | Condition                | Symbol            | Min | Тур | Max | Unit |
|--------------------------------|--------------------------|-------------------|-----|-----|-----|------|
| Driver input to output delay   |                          | t <sub>PLH</sub>  | -   | 125 | 200 | nS   |
| Driver input to output delay   |                          | t <sub>PHL</sub>  | -   | 80  | 150 | nS   |
| Driver output to output delay  | $R_{DIFF} = 60\Omega$    | t <sub>SKEW</sub> | -   | 4   | 15  | nS   |
| Driver rise or fall time       | See test ckt<br>Figure 2 | $t_{r,} t_{f}$    | -   | 100 | 150 | nS   |
| Driver Output enable delay     |                          | t <sub>ZH</sub>   | -   | 160 | 250 | nS   |
| Driver Output disable delay    |                          | $t_{LZ}$          | -   | 220 | 350 | nS   |
| Pagainer input to output delay |                          | t <sub>PLH</sub>  | -   | 80  | 150 | nS   |
| Receiver input to output delay | $I_O = 0$                | t <sub>PHL</sub>  | -   | 90  | 150 | nS   |
| Receiver rise or fall time     | See test ckt<br>Figure 2 | $t_{r,} t_{f}$    | -   | 26  | 50  | nS   |
| Receiver enable delay          | $C_L = 15pF$             | t <sub>ZL</sub>   | -   | 90  | 150 | nS   |
| Receiver disable delay         |                          | t <sub>ZH</sub>   | -   | 120 | 150 | nS   |

#### Notes:

- 1. Min/Max values are for VCC =  $+5V \pm 5\%$ , TC =  $-55^{\circ}$ C to  $+125^{\circ}$ C. Typical values are measured at VCC = +5V and TC =  $+25^{\circ}$ C.
- 2. Current measurements are for both channels.
- 3. Not tested, guaranteed by design to the specified limits.

### **DRIVER FUNCTION TABLE**

| Inp | outs   | Out     | puts    |
|-----|--------|---------|---------|
| DI  | DE     | BUS     | BUSN    |
| Н   | H/OPEN | Н       | L       |
| L   | H/OPEN | L       | Н       |
| X   | L      | OFF HiZ | OFF HiZ |

### **RECEIVER FUNCTION TABLE**

| DIFF Input | RE     | Output |
|------------|--------|--------|
| >-100mV    | L      | Н      |
| <-500mV    | L      | L      |
| X          | H/OPEN | Н      |
| OPEN       | X      | Н      |
| SHORT      | X      | Н      |

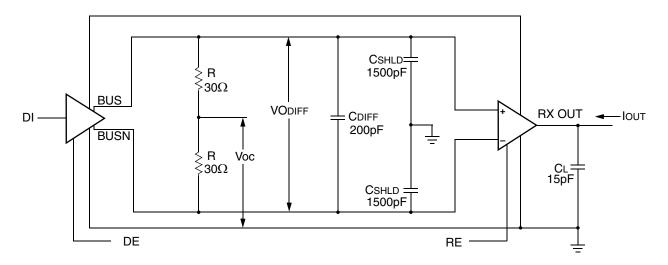



FIGURE 2 – DRIVER/RECEIVER TIMING TEST CIRCUIT (Channel 1 or 2)

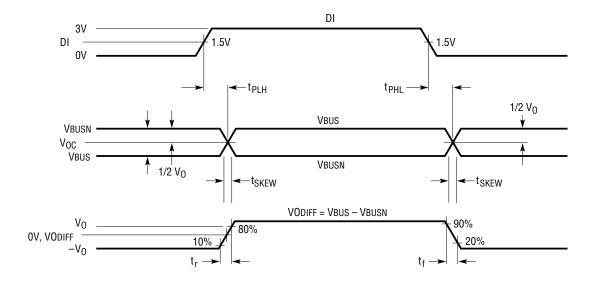



FIGURE 3 – DRIVER SWITCHING WAVEFORMS

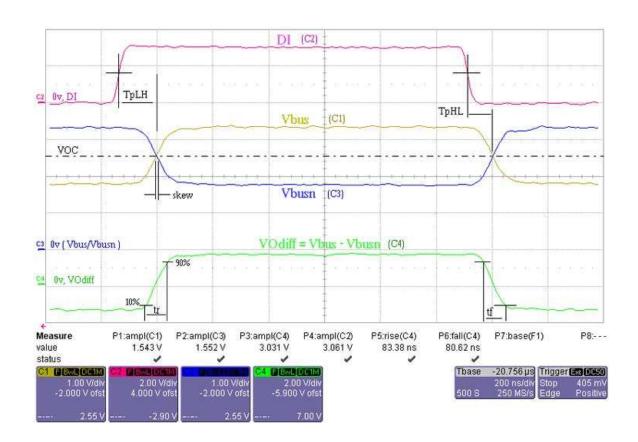



FIGURE 3A - TYPICAL DRIVER OUTPUTS

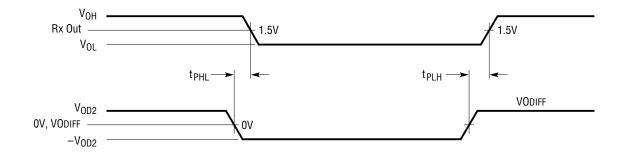



FIGURE 4 – RECEIVER SWITCHING WAVEFORMS

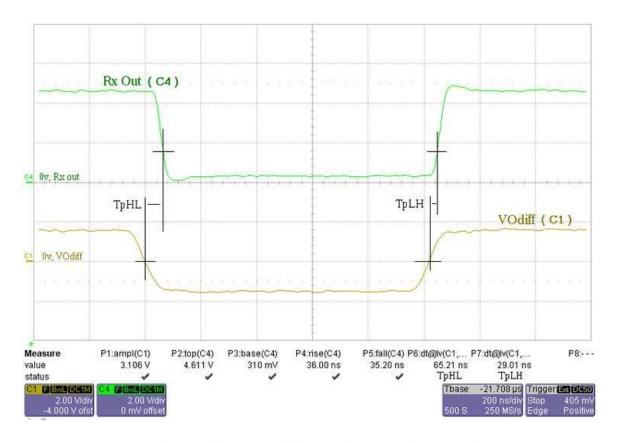
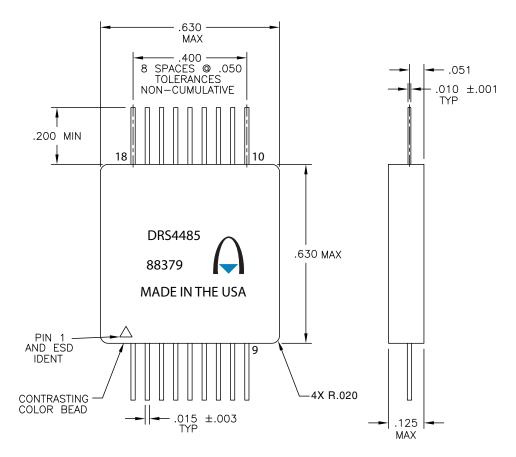




FIGURE 4A - TYPICAL RECEIVER OUTPUTS



PACKAGE CONFIGURATION OUTLINE

| Pin # | Function          | Pin # | Function          |
|-------|-------------------|-------|-------------------|
| 1     | DRIVER ENABLE 1   | 10    | VCC               |
| 2     | RECEIVER ENABLE 1 | 11    | GROUND            |
| 3     | RECEIVER OUT 1    | 12    | BUS 2             |
| 4     | CASE_GND          | 13    | BUSN 2            |
| 5     | DRIVER IN 1       | 14    | DRIVER IN 2       |
| 6     | BUSN 1            | 15    | NC_GND            |
| 7     | BUS 1             | 16    | RECEIVER OUT 2    |
| 8     | GROUND            | 17    | RECEIVER ENABLE 2 |
| 9     | VCC               | 18    | DRIVER ENABLE 2   |

PIN # vs FUNCTION TABLE

#### ORDERING INFORMATION

| Model                            | DSCC SMD #                         | CC SMD # Screening                                                                                                                      |           |
|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| DRS4485-7                        |                                    | Commercial Flow, +25°C testing only                                                                                                     |           |
| DRS4485-S                        | -                                  | Military Temperature, -55℃ to +125℃<br>Screened in accordance with the individual Test Methods<br>of MIL-STD-883 for Space Applications | Flat Pack |
| DRS4485-201-1S<br>DRS4485-201-2S | 5962-0922601KXC<br>5962-0922601KXA | In accordance with DSCC SMD                                                                                                             |           |

#### EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

#### **EXPORT WARNING:**

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

 PLAINVIEW, NEW YORK
 INTERNATIONAL
 NORTHEAST

 Toll Free: 800-THE-1553
 Tel: 805-778-9229
 Tel: 603-888-3975

 Fax: 516-694-6715
 Fax: 805-778-1980
 Fax: 603-888-4585

 SE AND MID-ATLANTIC
 WEST COAST
 CENTRAL

 Tel: 321-951-4164
 Tel: 949-362-2260
 Tel: 719-594-8017

 Fax: 321-951-4254
 Fax: 949-362-2266
 Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.





A passion for performance.



Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused