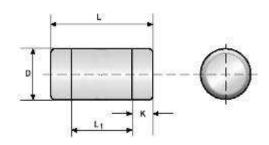
Stackpole Electronics, Inc. Resistive Product Solutions

Features:

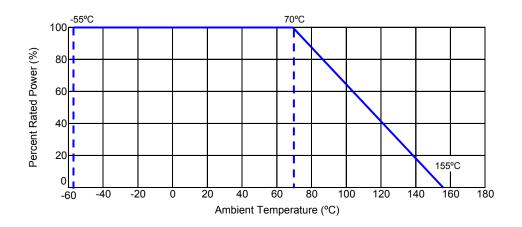

- Thin Film Technology for precision and stability
- Excellent power to size ratio
- Exhibits good pulse power characteristics
- RoHS compliant / lead-free

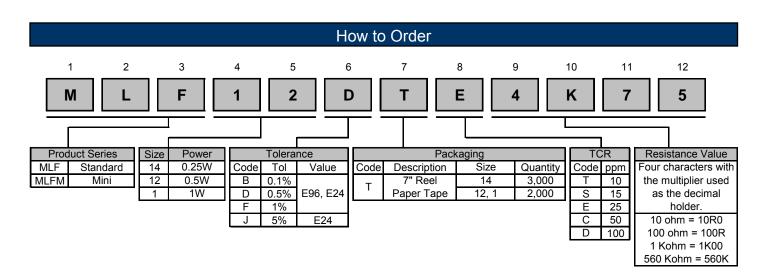
Electrical Specifications										
Type / Code	Package Size	Power Rating (Watts) @ 70°C	Maximum Working	Maximum Overload	Resistance Temperature	Ohmic Range (Ω) and Tolerance				
	0.20	(114110) @ 10 0	Voltage(1)	Voltage	Coefficient	0.1%		5%		
	0204	0.25W			±10 ppm/°C	49.9 - 20K	49.9 - 20K	49.9 - 20K	49.9 - 20K	
MLF14			200V		49.9 - 300K	49.9 - 300K	49.9 - 300K			
			2000		±25 ppm/°C	10 - 1M	10 - 1M	10 - 1M	10 - 4.7M	
					±50/100 ppm/°C	10 - 1M	1 - 1M	1 - 10M	1 - 10M	
MLF12	0207	0.5W	300V	500V	±10 ppm/°C	49.9 - 20K	49.9 - 20K	49.9 - 20K	49.9 - 20K	
					±15 ppm/°C	49.9 - 300K	49.9 - 300K	49.9 - 300K	49.9 - 300K	
IVILE 12					±25 ppm/°C	10 - 1M	10 - 1M	10 - 4.7M	10 - 4.7M	
					±50/100 ppm/°C	10 - 1M	1 - 1M	1 - 5.1M	1 - 10M	
MLFM1	0207	1W	350V	700V	±15 ppm/°C	49.9 - 100K	49.9 - 100K	49.9 - 100K	49.9 - 100K	
					±25 ppm/°C	10 - 1M	10 - 1M	10 - 1M	10 - 1M	
					±50/100 ppm/°C	10 - 1M	1 - 1M	1 - 10M	1 - 10M	

(1) Lesser of √PR or maximum working voltage

Mechanical Specifications									
Type / Code	L Body Length	D Body Diameter	L1 Inner Body	K Termination	Unit				
MLF14	0.138 ± 0.008	0.055 ± 0.006	0.09	0.020 ± 0.004	inches				
	3.50 ± 0.2	1.40 ± 0.15	2.3	0.50 ± 0.1	mm				
MLF12	0.232 ± 0.008	0.087 ± 0.008	0.185	0.020 ± 0.004	inches				
MLFM1	5.90 ± 0.2	2.20 ± 0.2	4.7	0.50 ± 0.1	mm				

Performance Characteristics								
Test	Specification							
Load Life	±2%							
Load Life in Moisture	±2%							
Resistance to Soldering Heat	±0.5%							
Solderability	Min 95% coverage							
Short Time Overload	±0.5%							
Insulation Resistance	1GΩ minimum							


1

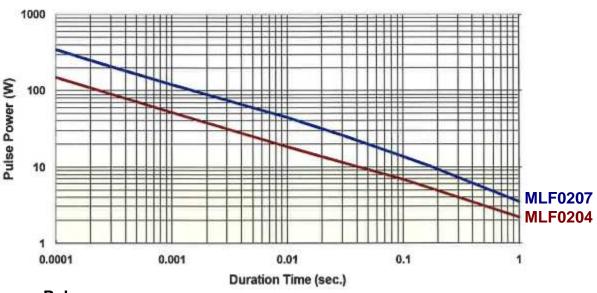

Operating Temperature Range: -55°C to +155°C

Resistive Product Solution

Power Derating Curve:

Metal Film Melf Resistor

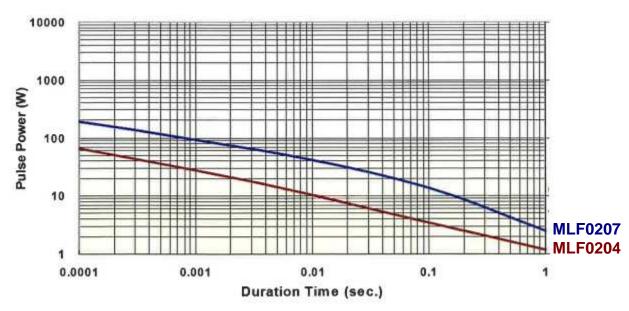
Legacy Part Number (before January 3, 2011):


SEI Type		Code		т	Nominal Resistance		Tolerance		Packaging			
MLF		1/2 T9		4.75K	0.5	5%	R					
Type	Description	Code	Wattage	TCR	(ppm)		Tolerance	Values	SEI Types	Pkg Qty	Code	Description
MLF	Standard	1/4	0.25W	T1	100		0.1%	E96, E24	MLF0204	3,000	R	7" reel
MLFM	Mini	1/2	0.5W	T2	50		0.5%	E96, E24	MLF0207, MLFM0207	2,000	K	paper tape
		1	1W	T9	25		1%	E96, E24				
				TD	15		5%	E24				
				TB	10		·					

Resistive Product Solution

Pulse withstanding capacity

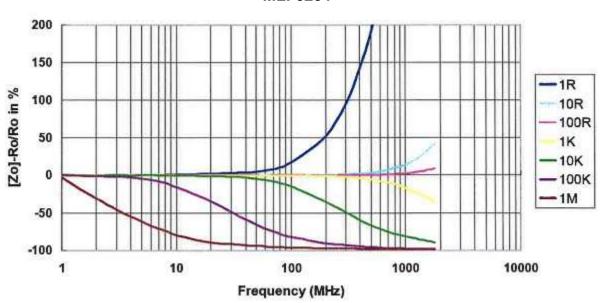
The single impulse graph is the result of 50 impulses of rectangular shape applied at one-minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.


MLF Series Single Pulse (100 Ohm)

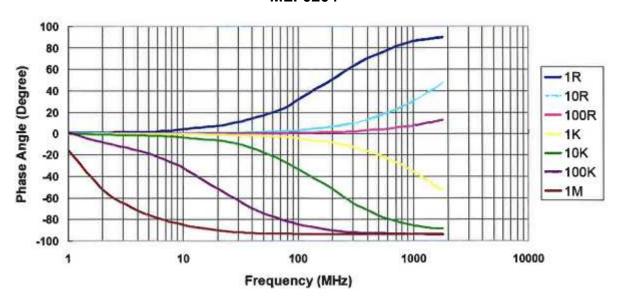
Continuous Pulse

The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.

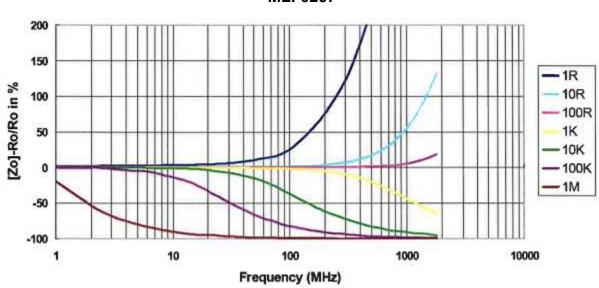
MLF Series Continuous Pulse (100 Ohm)

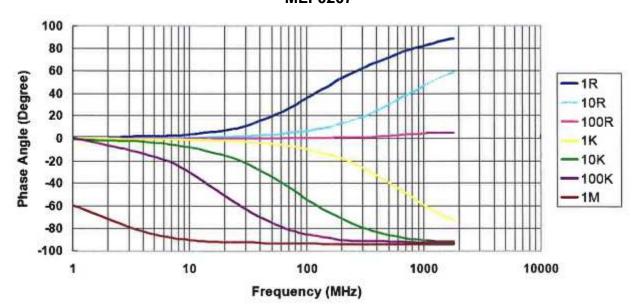


Frequency behavior


Resistors are designed to function according to ohmic laws. This is basically true of resistors for frequencies up to 100 kHz. At higher frequencies, there is an additional contribution to the impedance by an ideal resistor switched in series with a coil and both switched parallel to a capacitor. The values of the capacitance and inductance are mainly determined by the dimensions of the terminations and the conductive path length.

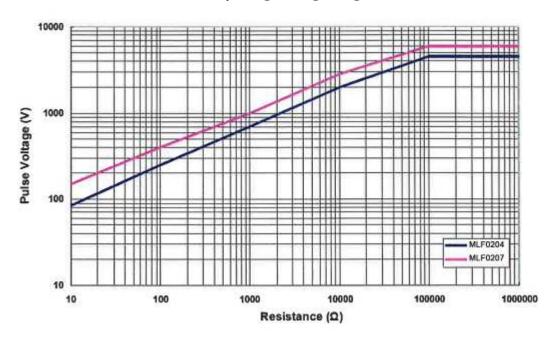
The environment surrounding components has a large influence on the behavior of the component on the printed-circuit board.


Frequency versus Impedance MLF0204

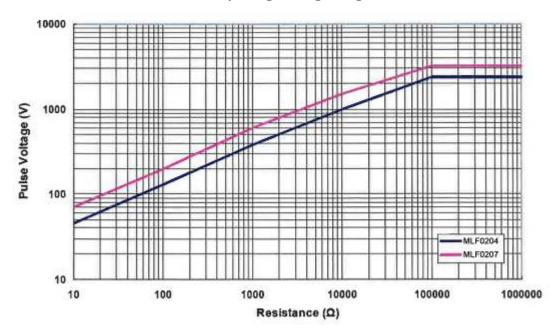

Frequency versus Phase Angle MLF0204

Frequency versus Impedance MLF0207

Frequency versus Phase Angle MLF0207



Resistive Product Solutions


Lightning Surge

Resistors are tested in accordance with IEC 60 115-1 using both 1.2/50us and 10/700us pulse shapes. The limit of acceptance is a shift in resistance of less than 0.5% from the initial value.

1.2/50µs Lightning Surge

10/700µs Lightning Surge

