

Current Transducer LA 125-P/SP1

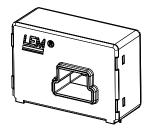
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

COMPLIANT 2002/95/EC 16034

Electrical data

I _{PN} I _{PM}	Primary nominal current rms Primary current, measuring range			125 0 ± 200			A A
R _M	Measuring resistance					85°C	
			R _{M mi}	$\mathbf{R}_{M \max}$	K _{M m}	in R _{M max}	
	with ± 12 V	@ ± 125 A _{max}	0	90	0	85	Ω
		@ ± 200 A _{max}	0	30	0	25	Ω
	with ± 15 V	@ ± 125 A _{max}	0	135	0	130	Ω
		@ ± 200 A _{max}	0	55	0	50	Ω
I _{SN}	Secondary nominal			62.	5		mA
K _N	Conversion ratio			1::	2000		
V _c	Supply voltage (±	5 %)		± 12	2 15	5	V
I _C	Current consumption	on		16	(@ ± 1	15 V) + I _g	₃ mA

Accuracy - Dynamic performance data


Х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ @ ± 15 V (± 5 %)	± 0.60	%
	@ ± 12 15 V (± 5 %)	± 0.80	%
E 1	Linearity error	< 0.15	%
-		Тур Мах	
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	± 0.20	mA
I _{OM}	Magnetic offset current ¹⁾ (2) $I_{P} = 0$ and specified R_{M} ,		
	after an overload of 3 x I _{PN}	± 0.25	mA
I _{OT}	Temperature variation of I_0 0°C + 70°C	± 0.10 ± 0.25	mA
	- 25°C + 85°C	± 0.10 ± 0.30	mA
t _{ra}	Reaction time to 10 % of I _{PN}	< 500	ns
t,	Response time ^{2) 3)} to 90 % of I _{PN} step	< 1	μs
di/dt	di/dt accurately followed 3)	> 200	A/µs
BW	Frequency bandwidth ³⁾ (- 1 dB)	DC 100	kHz

General data

T _A T _s	Ambient operating temperature Ambient storage temperature		- 25 + 85 - 40 + 90	°C °C
R _s	Secondary coil resistance	@ T _A = 70°C	76	Ω
0		@ T _A = 85°C	80	Ω
m	Mass		40	g
	Standards		EN 50178: 1997	

Notes: 1) Result of the coercive field of the magnetic circuit

³⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Isolated plastic case recognized according to UL 94-V0.

Special feature

• **K**_N = 1 : 2000.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

²⁾ With a di/dt of 100 A/µs

Current Transducer LA 125-P/SP1

lso	lation characteristics		
V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	3	kV
Ŷ	Impulse withstand voltage 1.2/50 µs	7	kV
		Min	
dCp	Creepage distance	6.7	mm
dCl	Clearance distance	6.7	mm
СТІ	Comparative Tracking Index (group IIIa)	175	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_{w}	Rated isolation voltage	Nominal voltage
Single isolation	600 V	600 V
Reinforced isolation	300 V	300 V

Safety

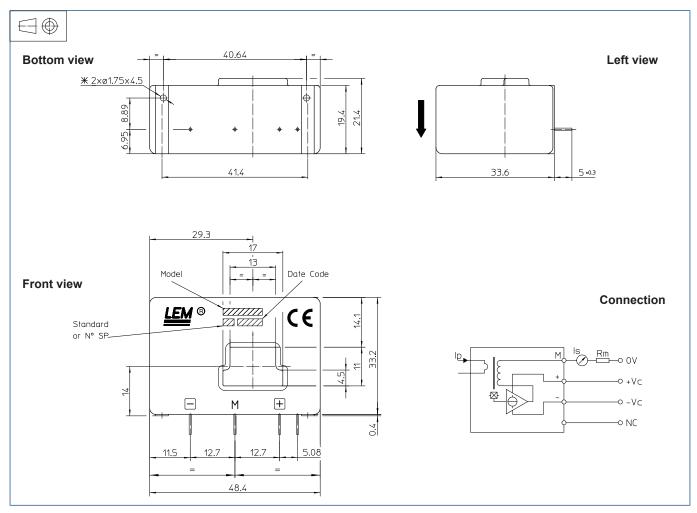
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Page 2/3

Dimensions LA 125-P/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

- Primary through-hole
- Fastening & connection of secondary
- Recommended PCB hole
- Supplementary fastening Recommended PCB hole Recommended screws Recommended fastening torque

4 pins
0.63 x 0.56 mm
0.9 mm
2 holes Ø 1.75 mm
2.4 mm
PT KA 22 x 6
0.5 Nm
or 0.37 Lb Ft.

± 0.2 mm

17 x 11 mm

Remarks

- $I_{_{\rm S}}$ is positive when $I_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C.
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Page 3/3