

Current Transducer LA 25-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			25			Α
I _P	Primary current, measuring	ng range		0	± 55		Α
\mathbf{R}_{M}	Measuring resistance @		$T_A =$	70℃	T _ =	= 85℃	
			R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M min}	$\mathbf{R}_{\mathrm{Mmax}}$	
	with ± 12 V	$@ \pm 25 A_{max}$	10	280	60	275	Ω
		@ ± 55 A _{max}	10	80	60	75	Ω
	with ± 15 V	@ ± 25 A _{max}	50	400	135	395	Ω
		@ ± 55 A _{max}	50	140	135	135	Ω
$I_{\rm SN}$	Secondary nominal r.m.s.	. current		25			mΑ
K _N	Conversion ratio			1:	1000		
v c	Supply voltage (± 5 %)			± 1	2 1	5	V
l _c	Current consumption			10	@±15	$V) + I_S$	m A
Ι _C	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 m	ın	3		J	kV

Accuracy - Dynamic performance data

X	Accuracy $@I_{PN}$, $I_A = 25 °C$	$(\omega \pm 15 \text{ V} (\pm 5 \%))$	± 0.95		%
		@ ± 12 15 V (± 5 %)	± 1.25		%
$\epsilon_{\scriptscriptstyle extsf{L}}$	Linearity error		< 0.15		%
	Officet accompany (S.L. O. T.	05.00	Тур	Max ± 0.2	A
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.2	mΑ
I _{OM}	Residual current ¹⁾ @ $I_P = 0$, after an overload of 3 x I_{PN}			± 0.3	mΑ
I_{OT}	Thermal drift of I	0℃+70℃	± 0.1	± 0.5	mΑ
0.	, and the second	- 25℃ + 85℃	± 0.1	± 0.6	mΑ
t _{ra}	Reaction time @ 10 % of Ip	may	< 500		ns
t.	Response time @ 90 % of I		< 1		μs
di/dt	di/dt accurately followed	r max	> 200		A/μs
f		2)	DC 2	200	kHz
1	Frequency bandwidth (- 1 de	o)	DC 2	200	KΠZ

@ | 1E \/ (| E 0/\

.

General data

T _A	Ambient operating temperature		- 25 + 85	°C
$T_{\rm s}$	Ambient storage temperature		- 40 + 90	°C
$\ddot{\mathbf{R}_{\mathrm{s}}}$	Secondary coil resistance @	T _A = 70 °C	80	Ω
Ü		T _A = 85 ℃	85	Ω
m	Mass		24	g
	Standards		EN 50178 : 1997	

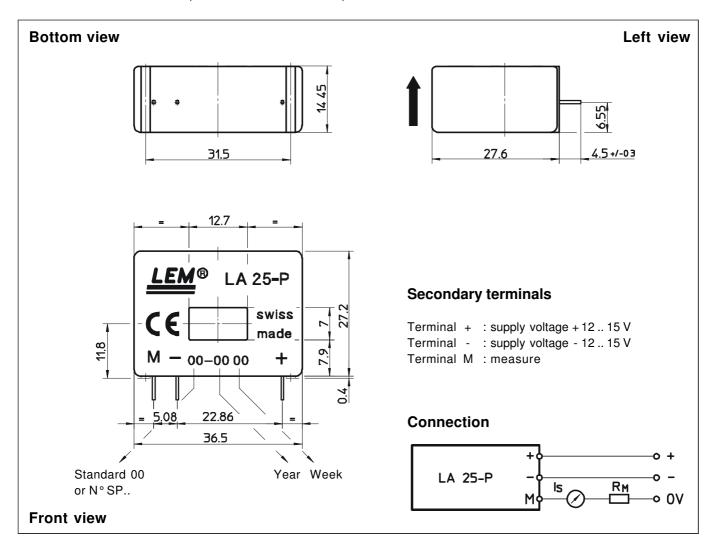
Notes: 1) Result of the coercive field of the magnetic circuit.

25 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- · Insulated plastic case recognized according to UL 94-V0.

Advantages


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LA 25-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.