

Current Transducer LAH 25-NP

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

\mathbf{I}_{PN}	Primary nominal current	rms		25			At
I _{PM}	Primary current, measuring	ng range 1)		0	55		Αt
R _M	Measuring resistance @	2)	$T_A =$	70℃	T _A	= 85℃	
			\mathbf{R}_{Mmini}	\mathbf{R}_{Mmaxi}	R _{M min}	R _{M maxi}	
	with ± 12 V	$@ I_{PN}[\pm At_{DC}]$	0	284	0	280	Ω
		$\mathbf{@} \mathbf{I}_{PN} [At_{RMS}]_3^{})$	0	182	0	178	Ω
	with ± 15 V	$@ I_{PN} [\pm At_{DC}]$	67	398	70	394	Ω
		@ I _{PN} [At _{RMS}] ³⁾	67	263	70	259	Ω
		@ $I_P < I_{PN}^{4}$					

I _{SN}	Secondary nominal current rms	25	mΑ
K	Conversion ratio	1 - 2 - 3 : 1000	
v	Supply voltage (± 5 %)	± 12 15	٧
I _c	Current consumption	10 (@ \pm 15V) + I_s	mΑ

Accuracy - Dynamic performance data

X	Accuracy ⁵⁾ @ \mathbf{I}_{PN} . $\mathbf{T}_{A} = 25 ^{\circ}\text{C}$	± 0.3	%
$\epsilon_{\scriptscriptstyle extsf{L}}$	Linearity error	< 0.2	%
		Тур Ма	axi
I _o	Offset current @ T _A = 25 °C	± (axi).15 mA
I _{OM}	Magnetic offset current @ $I_p = 0$ and specified R_M ,		
	after an overload of 5 x I_{PN}	± 0.20 ± 0).25 mA
I_{OT}	Temperature variation of I_0 0 °C + 70 °C	± 0.10 ± 0	0.60 mA
	- 25℃ + 85℃	± 0.10 ± 0	0.70 mA
t _{ra}	Reaction time @ 10 % of I _{PN}	< 200	ns
t _{ra} t _r	Response time ⁶⁾ to 90 % of I _{PN} step	< 500	ns
di/dt	di/dt accurately followed	> 200	A/μs
BW	Frequency bandwidth (- 1 dB)	DC 200	kHz
G	noral data		

General data

$T_{_{A}}$	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance	@ T _A = 70 °C	72	Ω
Ü		@ T _A = 85 ℃	76	Ω
m	Mass		20	g
	Standards		EN 50178: 19	997

Notes: 1) During 10 s, with $R_{\rm M} \le 109 \ \Omega \ (V_{\rm C} = \pm 15 \ \rm V)$

- ²⁾ Calculation of $\mathbf{R}_{\text{M mini}}^{\text{M}}$ with the maxi. power of the transistors = 0.307W @ 70 °C and the maxi. power of the transistors = 0.302W @ 85 °C
- 3) 50 Hz Sinusoidal
- $^{\rm 4)}$ The measuring resistance ${\bf R}_{\rm M \; mini}$ may be lower (see "LAH Technical Information" leaflet)
- 5) Without I_O& I_{OM}
- 6) With a di/dt of 100 A/μs.

$I_{DN} = 8-12-25 \text{ A}$

Features

- · Closed loop (compensated) multirange current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LAH 25-NP

Iso	Isolation characteristics						
V _d	Rms voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV				
$\hat{\mathbf{V}}_{w}^{d}$	Impulse withstand voltage 1.2/50 μs	12	kV				
V _e	Partial discharge extinction voltage rms @ 10pC	>2	kV				
		Mini					
dCp	Creepage distance 7)	12	m m				
dCl	Clearance distance 7)	12	m m				
CTI	Comparative Tracking Index (Group I)	175					

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl,	Rated isolation voltage	Nominal voltage
Single isolation	1000 V	1000 V
Reinforced isolation	500 V	500 V

Note: 7) On PCB with soldering pattern UTEC93-703.

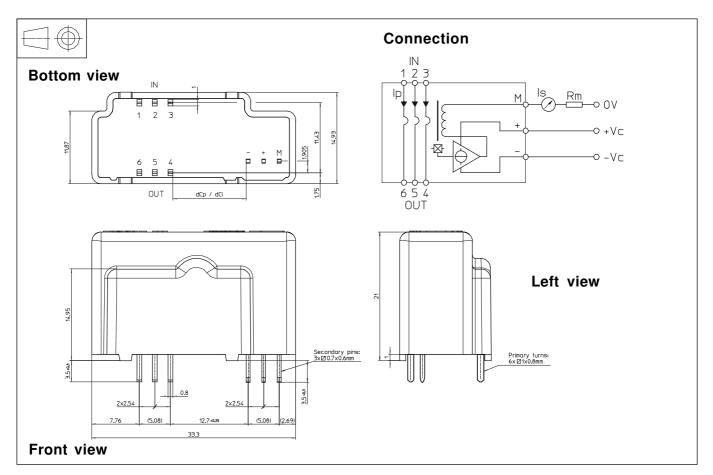
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LAH 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal I _{PN} [A]	current maximum I _P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]	Primary insertion inductance L _P [μH]	Recommended PCB connections
1	25	55	25	1 : 1000	0.18	0.012	3 2 1 IN 0-0-0 0-0-0 OUT 4 5 6
2	12	27	24	2:1000	0.81	0.054	3 2 1 IN O-O O O-O O OUT 4 5 6
3	8	18	24	3 : 1000	1.62	0.110	3 2 1 IN 0 0 0 0 0 0 OUT 4 5 6

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1 x 0.8 mm
- 1.5 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- ${\bf I}_{\rm S}$ is positive when ${\bf I}_{\rm P}$ flows from terminals 1, 2, 3 (IN) to terminals 6, 5, 4 (OUT).
- The jumper temperature and PCB should not exceed 100 ℃.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Page 3/3