

Current Transducer LAH 50-P/SP1

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

L					
I	Primary nominal current rms	50			
	Primary current, measuring range 1)	0 ± 90			
	Measuring resistance @	$\mathbf{T}_{A} = 70 ^{\circ}\text{C} \mid \mathbf{T}_{A} = 85 ^{\circ}\text{C}$			
		$\mathbf{R}_{Mmin}^{T}\mathbf{R}_{Mmax}^{T}\mathbf{R}_{Mmin}^{T}\mathbf{R}_{Mmax}^{T}$			
	with \pm 15 V @ I_{PN} [\pm A $_{DC}$]	22 163 58 159	Ω		
	@ $I_{PN} [A_{RMS}]^{2}$	22 93 58 89	Ω		
		•			
	0	ΓΟ	_ ^		

$I_{_{\mathrm{SN}}}$	Secondary nominal current rms	50	mΑ
K	Conversion ratio	1:1000	
V	Supply voltage (± 5 %)	± 15	V
I c	Current consumption	10 + I _s	mA

Accuracy - Dynamic performance data

X	Accuracy³) @ I _{PN} , T _A = 25℃	± 0.25		%
$\epsilon_{\scriptscriptstyle extsf{L}}$	Linearity error	< 0.15		%
		Тур	Max	
I_{\circ}	Offset current @ T _A = 25°C		± 0.3	mΑ
I _{OM}	Magnetic offset current @ $I_P = 0$ and specified R_M ,			
	after an overload of 5 x I_{PN}	± 0.2	± 0.3	mΑ
I_{OT}	Temperature variation of I_0 0°C + 70°C	± 0.2	± 0.6	mΑ
	- 25℃ + 85℃	± 0.2	± 0.8	mΑ
t _{r a}	Reaction time @ 10 % of I _{PN}	< 200		ns
t,	Response time 4) to 90 % of I _{PN} step	< 500		ns
di/dt	di/dt accurately followed	> 200		A/μs
BW	Frequency bandwidth (- 1 dB)	DC 2	00	kHz

General data

5 °C
O °C
Ω
Ω
g
3: 1997
•

¹⁾ During 10 s, with $\mathbf{R}_{M} \leq 53 \Omega$ Notes:

- ²⁾ The measuring resistance $\mathbf{R}_{\text{M min}}$ may be lower (see "LAH Technical Information" leaflet or the "LAH Application Note")
- $^{3)}$ Without $\mathbf{I}_{\mathrm{O}}\&~\mathbf{I}_{\mathrm{OM}}$ $^{4)}$ With a di/dt of 100 A/µs.

$I_{PN} = 50 \, A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Special features

• $I_{DM} = 0 .. \pm 90 A$ • **K**_N= 1:1000.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LAH 50-P/SP1

Isolation characteristics					
V _d	Rms voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV		
$\hat{\mathbf{V}}_{w}^{d}$	Impulse withstand voltage 1.2/50 μs	12	kV		
V _e	Partial discharge extinction voltage rms @ 10pC	>2	kV		
		Min			
dCp	Creepage distance 5)	11.75	m m		
dCl	Clearance distance 5)	11.75	m m		
CTI	Comparative Tracking Index (Group III a)	175			

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1	
dCp, dCl	Rated isolation voltage	Nominal voltage	
Single isolation	1000 V	1000 V	
Reinforced isolation	500 V	500 V	

Note: 5) On PCB with soldering pattern UTEC93-703.

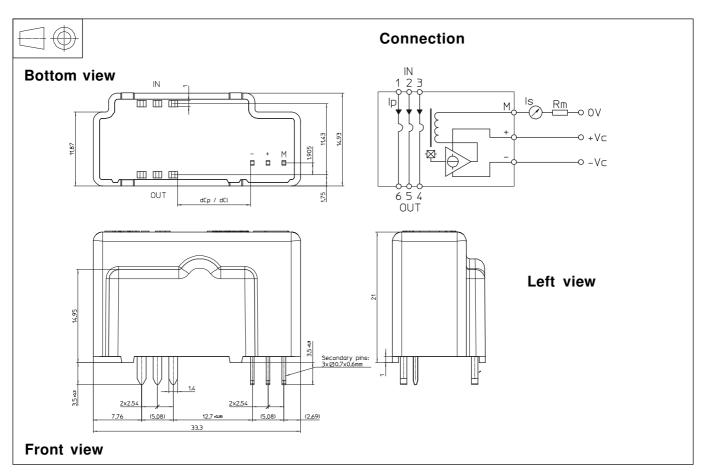
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LAH 50-P/SP1 (in mm. 1 mm = 0.0394 inch)

Number of primary	Primary nominal	current maximum	Nominal	Turns ratio	-	Primary insertion inductance
turns	I _{PN} [A]		I _{SN} [mA]	K _N	\mathbf{R}_{P} [m Ω]	L _P [μH]
1	50	90	50	1:1000	0.12	0.008

Mechanical characteristics

• General tolerance

• Fastening & connection of primary Recommended PCB hole

• Fastening & connection of secondary Recommended PCB hole

± 0.2 mm

6 pins 1.4 x 1 mm 2 mm

3 pins 0.7 x 0.6 mm

1.2 mm

Remarks

- I_s is positive when I_p flows from IN to OUT.
- The jumper temperature and PCB should not exceed 100 ℃.