

Current Transducer LA 205-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16140

Electrical data

	cottical data						
I_{PN}	Primary nominal r.m.s	200				Α	
I _P	Primary current, measuring range			0 ± 300			Α
Î _{P max}	Measuring overload 1)		600			Α	
R _M	Measuring resistance	@	$T_A = 70 ^{\circ}\text{C} \mid T_A = 8$		= 85°C	;	
			$\mathbf{R}_{M\;min}$	$\mathbf{R}_{\mathrm{M}\ \mathrm{max}}$	R _{M min}	$\mathbf{R}_{M\ max}$	
	with ± 12 V	$@ \pm 200 A_{max}$	0	68	0	66	Ω
		@ ± 300 A _{max}	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A _{max}	5	95	5	93	Ω
		@ ± 300 A _{max}	5	50	5	49	Ω
I_{SN}	Secondary nominal r.m.s. current		100			m A	
K _N	Conversion ratio		1:2000				
V _C	Supply voltage (± 5 %))	± 12 15		V		
I _c	Current consumption		20 (@±15V) + I _S m A				
$\dot{\mathbf{V}}_{_{\mathrm{b}}}$	R.m.s rated voltage 2), safe separation			162	25	· ·	V

basic isolation

3250

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall accuracy @ I _{PN} , T _A = 25 ℃	± 0.8		%
$\mathbf{\epsilon}_{\scriptscriptstyle L}$	Linearity error	< 0.1		%
		Тур	Max	
I_{\circ}	Offset current @ $I_P = 0$, $T_A = 25$ °C		Max ± 0.15	m A
I _{OM}	Residual current ³⁾ @ $I_p = 0$, after an overload of 3 x	I _{PN}	± 0.50	m A
I _{OT}	Thermal drift of I_0 - 10 °C + 85 °C	± 0.15	± 0.30	m A
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns
t _r	Response time 4) @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed	> 100		A/μs
f	Frequency bandwidth (- 3 dB)	DC 1	100	kHz

General data

T _A	Ambient operating temperature Ambient storage temperature		- 10 + 85 - 40 + 90	ა ე
R s	Secondary coil resistance @	$T_A = 70 ^{\circ}\text{C}$ $T_A = 85 ^{\circ}\text{C}$	35 37	Ω
m	Mass Standards	- _A - 00 0	110 EN 50178 : 1	g
	Otandards	LIN 30170 . 1997		

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- ²⁾ Pollution class nr 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- $^{4)}$ With a di/dt of 100 A/ μ s.

$I_{DN} = 200 A$

Features

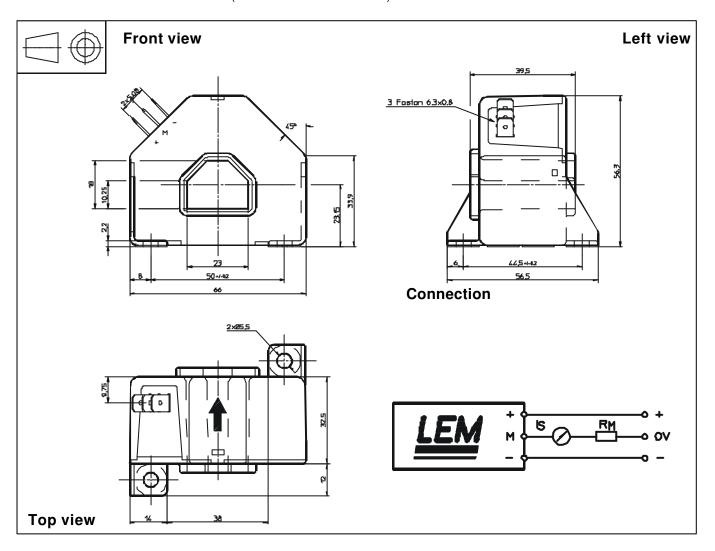
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Special feature

• Connection to secondary circuit on Faston 6.3 x 0.8 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060531/3

Dimensions LA 205-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max.

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 23 x 18 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.