

Current Transducer LA 305-S/SP5

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

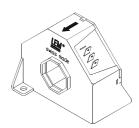
		1	1
		1	٠

Electrical data

I _{PN}	Primary nominal r.m.s. current			300			Α
I _P	Primary current, measuring range			0 ± 500			Α
$\dot{\mathbf{R}}_{\scriptscriptstyle{\mathrm{M}}}$	Measuring resistance @		$T_{A} =$	70℃	T _ =	= 85℃	
			\mathbf{R}_{Mmir}^{n}	\mathbf{R}_{Mmax}	R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 12 V	$@ \pm 300 A_{max}$	0	52	0	50	Ω
		@ ± 500 A _{max}	0	17	0	15	Ω
	with ± 15 V	@ $\pm 300 A_{max}$	0	75	5	73	Ω
		@ \pm 500 A $_{max}$	0	31	5	29	Ω
I_{SN}	Secondary nominal r.m.s. current			12	0		mΑ
K _N	Conversion ratio			1:2500			
V _C	Supply voltage (± 5 %)			± 12 15 V			
I _c	Current consumption		20 (@ ± 15 V) + I _s m A				mΑ
\mathbf{V}_{b}	R.m.s. rated voltage	¹⁾ , safe separation		17	50		V
		basic isolation		350	00		V

Accuracy -	Dynamic	performance	data
Accuracy -	DVIIaiiiic	Dellolliance	uala

\mathbf{X}_{G}	Overall accuracy @ I_{PN} , $T_A = 25$ °C		± 0.8		%
\mathbf{E}_{L}	Linearity		< 0.1		%
			Тур	Max	
I_{\circ}	Offset current @ $I_P = 0$, $T_A = 25$ °C			Max ± 0.20 ± 0.40	mΑ
I _{OM}	Residual current 2 @ $I_p = 0$, after an overlo	ad of 3 x I _{PN}		± 0.40	mΑ
I _{OT}	Thermal drift of I _o - 10 ℃	+ 85℃	± 0.12	± 0.30	mΑ
t _{ra}	Reaction time @ 10 % of I_{PN}		< 500		ns
t,	Response time 3 @ 90 % of I _{PN}		< 1		μs
di/dt	di/dt accurately followed		> 100		A/μs
f	Frequency bandwidth (- 3 dB)		DC 1	00	kHz


General data

T _A	Ambient operating temperature		- 10 + 85	°C	
$T_{\rm s}$	Ambient storage temperature		- 40 + 90	°C	
$\ddot{\mathbf{R}_{\mathrm{s}}}$	Secondary coil resistance @	T _A = 70 °C	35	Ω	
Ü		T _A = 85 ℃	37	Ω	
m	Mass		200	g	
	Standards		EN 50178 : 1997		

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs.

$I_{PN} = 300 A$

Features

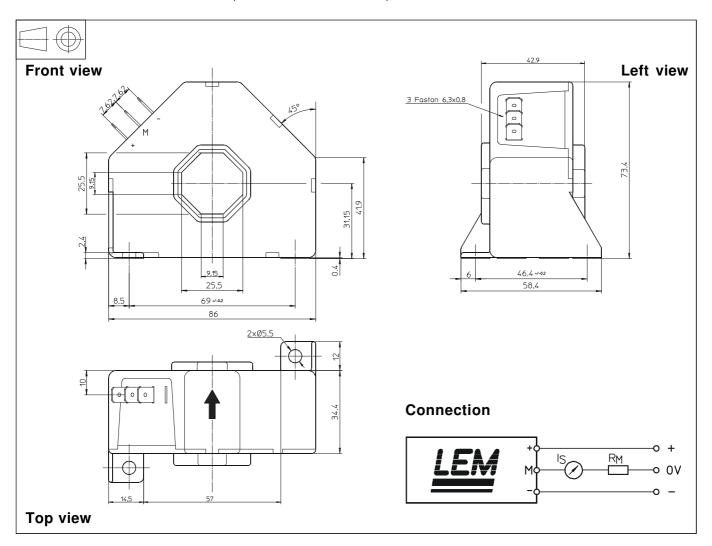
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special feature

• Connection to secondary circuit on Faston 6.3 x 0.8 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060727/3

Dimensions LA 305-S/SP5 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 25.5 x 25.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.