

Current Transducer LA 305-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

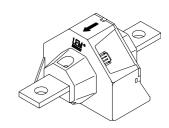
16236

LIAATPIAAI AA	+^
Electrical da	10
= IOOti IOUI UU	•••

I _{PN}	Primary nominal r.m.s. current		300				Α
I _P	Primary current, mea	suring range		0	± 500)	Α
$\dot{\mathbf{R}}_{_{\mathrm{M}}}$	Measuring resistance	@	$T_{A} =$	70℃	T _ =	= 85℃	
			R _{M mir}	$\mathbf{R}_{M\;max}$	R _{M min}	R _{M max}	
	with ± 12 V	$@ \pm 300 A_{max}$	0	52	0	50	Ω
		@ ± 500 A max	0	17	0	15	Ω
	with ± 15 V	@ ± 300 A max	0	75	5	73	Ω
		@ $\pm 500 \text{ A}_{max}^{max}$	0	31	5	29	Ω
I_{SN}	Secondary nominal r.	m.s. current		120	0		mΑ
K _N	Conversion ratio			1:	2500		
v _c	Supply voltage (± 5 %	6)		± 1	2 1	5	V
I c	Current consumption			20	(@ ± 15	(V) + I _S	mA
$\mathbf{V}_{_{b}}$	R.m.s. rated voltage 1), safe separation		175	50	Ü	V
v		basic isolation		350	00		V

Accuracy -	Dyn	amic	nerf	ormance	data
Acculacy -	$\boldsymbol{\nu}$	anno	DCII	Ulliance	, uata

\mathbf{x}_{G}	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Linearity error	± 0.8 < 0.1	%
I _О	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}\mathrm{C}$ Residual current 2 @ $\mathbf{I}_{\rm p} = 0$, after an overload of 3 x $\mathbf{I}_{\rm PN}$ Thermal drift of $\mathbf{I}_{\rm O}$ - 10 $^{\circ}\mathrm{C}$ + 85 $^{\circ}\mathrm{C}$		mA mA
t _{ra} t _r di/dt f	Reaction time @ 10 % of \mathbf{I}_{PN} Response time $^{3)}$ @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (- 3 dB)	< 500 < 1 > 100 DC 100	ns μs Α/μs kHz


General data

_				
T _A	Ambient operating temperature		- 10 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	T _A = 70 °C	35	Ω
J		T _∆ = 85 °C	37	Ω
m	Mass	^	400	g
	Standards		EN 50178 : 1	997

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit.
- ³⁾ With a di/dt of 100 A/µs.

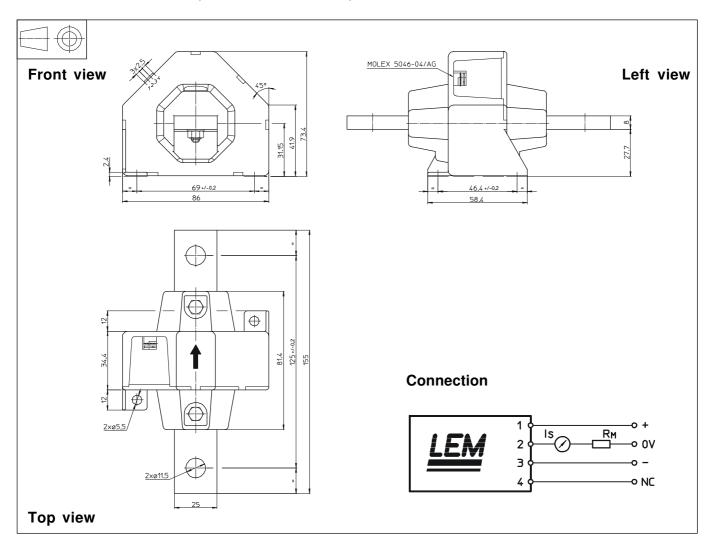
$I_{PN} = 300 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060912/5

Dimensions LA 305-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5

 $\begin{tabular}{ll} \bullet & \mbox{Fastening} \\ \mbox{by transducer} & 2 & \mbox{holes} \ensuremath{\varnothing} & 5.5 & \mbox{mm} \\ \ensuremath{\end{array}$

2 M5 steel screws • This is

Fastening torque, max. 4 Nm or 2.95 Lb. - Ft.

or

by the primary 2 holes \varnothing 11.5 mm • Connection of secondary Molex 5046-04/AG

Remarks

- \bullet I_s is positive when I_P flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.