
Current Transducer LT 10000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 10000 A$

Electrical data

PN	Primary nominal r.m.s. current		10000		A
I _P	Primary current, measuring range (1 s/mn)		0 ± 15000		Α
$\mathbf{R}_{\scriptscriptstyleM}$	Measuring resistance		$\mathbf{R}_{M\;min}$	$\mathbf{R}_{M\;max}$	
	with ± 48 V	@ $\pm 10000 A_{max}$	0	8	Ω
		@ ± 12000 A max	0	1	Ω
	with ± 60 V	@ ± 10000 A max	0	20	Ω
		@ ± 15000 A max	0	1.5	Ω
I_{SN}	Secondary nominal r.m.s. current		1		Α
K _N	Conversion ratio		1:100	000	
$\mathbf{V}_{\mathtt{c}}$	Supply voltage (± 5 %)		± 48	60	V
I _C	Current consumption		$40(@\pm60V)+I_{S} mA$		
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		10 1)		k۷
			1 ²⁾		k۷

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25 °C Linearity error		± 0.3 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 25°C + 70°C	Typ ± 0.6	Max ± 1.5 ± 0.8	m A m A
t _r di/dt f	Response time 3) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)		< 1 > 50 DC 1	00	μs A/μs kHz

General data

T _A	Ambient operating temperature	- 25 + 70	°C	
$T_{\rm s}$	Ambient storage temperature	- 40 + 85	°C	
\mathbf{R}_{s}	Secondary coil resistance @ $T_A = 70$ °C	35	Ω	
m	Mass	17	kg	
	Standards	EN 50178 (97.1	EN 50178 (97.10.01)	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated case.

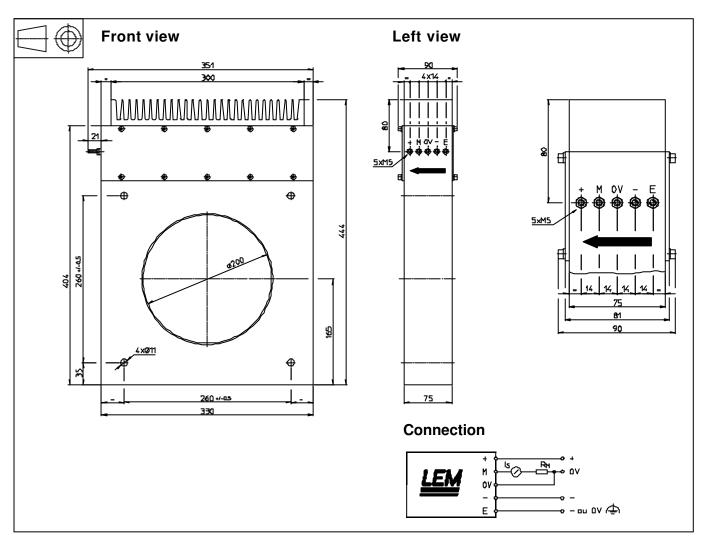
Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) With a di/dt of 100 A/µs.

031003/8

Dimensions LT 10000-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary Recommended fastening torque
- ±1 mm
- 4 holes Ø 11 mm
- 4 x M10 steel screws 11.4 Nm or 8.48 Lb - Ft
- Ø 200 mm

200 mm

M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Dynamic performances (di/dt and response time) are best with a primary bar in the center of the through-hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.