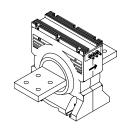


Current Transducer LT 4000-T


For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 4000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		4000 0 ± 6 R _{M min}	000 R _{Mmax}	A A
	with ± 24 V	@ $\pm 4000 \text{ A}_{max}$ @ $\pm 6000 \text{ A}_{max}$	0 0	10 2	Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC iso		800 1:500 ± 24 35(@±:	0 24V)+ I s	mA V mA kV

Accuracy - Dynamic performance data

Χ _G ε _L	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.5 < 0.1	% %
I _о	Offset current @ $\mathbf{I}_{\rm P} = 0$, $\mathbf{T}_{\rm A} = 25 {\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25℃ + 70℃	Typ Max ± 0.8 ± 0.6 ± 0.8	
t _r di/dt f	Response time $^{1)}$ @ 90 % of $\mathbf{I}_{\mathrm{P \ max}}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 100	μs A/μs kHz

General data

T _A	Ambient operating temperature	- 25 + 70	${\mathcal C}$	
T _s	Ambient storage temperature	- 40 + 85	${\mathfrak C}$	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70℃	15	Ω	
m	Mass	12.1	kg	
	Standards	EN 50178: 19	EN 50178: 1997	

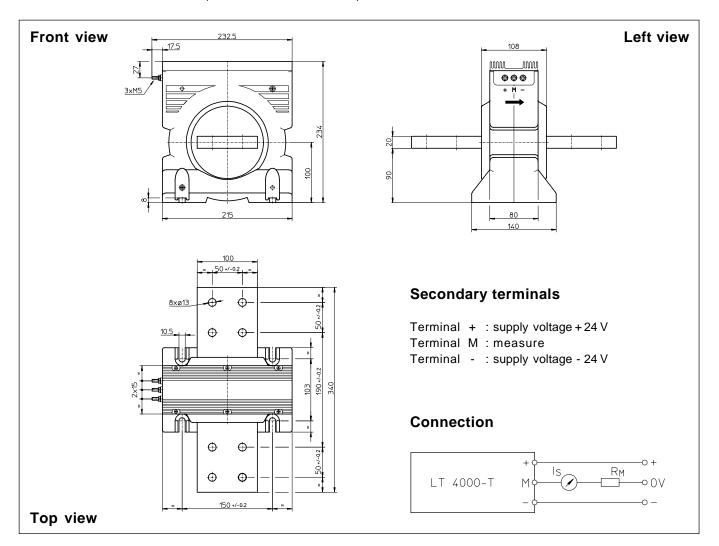
Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note: 1) With a di/dt of 100 A/µs.

070405/6

Dimensions LT 4000-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary Fastening torque
- ± 1 mm
- 4 holes \varnothing 10.5 mm or by the primary bar 8 holes \varnothing 13 mm
- M5 threaded studs
- 2.2 Nm or 1.62 Lb Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.