

Voltage Transducer LV 25-1000

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

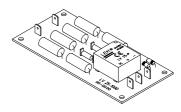
CE

/ _{PN}	Primary nominal r.m.s	s. voltage	1000		V
/ _	Primary voltage, measuring range		0 ± 1500		V
PN	Primary nominal r.m.s. current		8		mΑ
R _M	Measuring resistance		$\mathbf{R}_{\mathrm{Mmin}}$	R _{Mmax}	ĸ
	with ± 12 V	@ ±1000 V _{max}	30	200	Ω
		@ ±1500 V max	30	100	Ω
	with ± 15 V	@ ±1000 V max	100	320	Ω
		@ ±1500 V max	100	180	Ω
SN	Secondary nominal r.	m.s. current	25		mA
(_N	Conversion ratio		1000 V / 25 mA		
/ c	Supply voltage (± 5 %)		± 12	15	V
	Current consumption		10 (@±15V) + I s mA		
c V _d	R.m.s. voltage for AC isolation test 1, 50 Hz, 1 mn		4.1	, c	, kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ V_{PN} , $T_{A} = 25$ %	С	± 0.8		%
Χ _G ε	Linearity		< 0.2		%
			Тур	Max	
I _o	Offset current @ $I_p = 0$, $T_a = 25 $ °C			Max ± 0.15 ± 0.60 ± 0.35	mΑ
I _{OT}	Thermal drift of I_0	- 25℃ + 25℃	± 0.10	± 0.60	mА
		+ 25℃ + 70℃	± 0.10	± 0.35	mΑ
t,	Response time @ 90 % of ${f V}_{_{\sf PN}}$		40		μs

General data


T _A T _S N	Ambient operating temperature Ambient storage temperature Turns ratio	- 25 + 70 - 40 + 85 3100 : 1000	℃ ℃
Р	Total primary power loss	8	W
\mathbf{R}_{1}	Primary resistance @ T _A = 25 ℃	125	kΩ
Rs	Secondary coil resistance @ $T_A = 70 ^{\circ}C$	110	Ω
m	Mass	60	g
	Standards ²⁾	EN 50178	

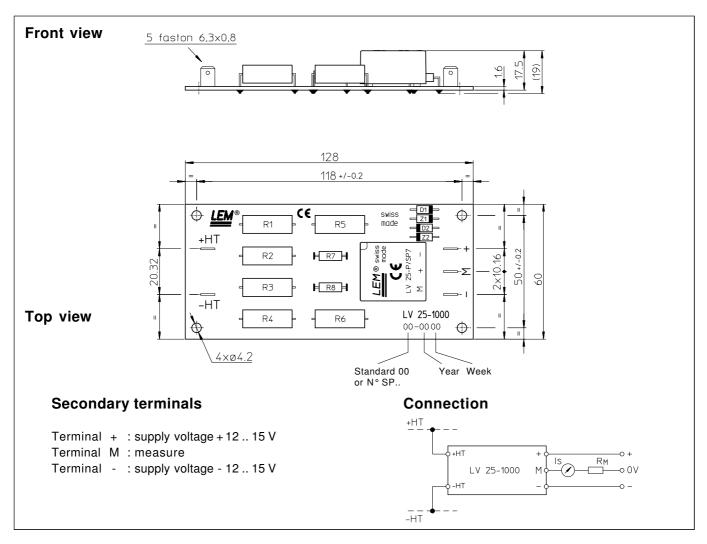
Notes : 1) Between primary and secondary

²⁾ A list of corresponding tests is available

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R, and transducer mounted on printed circuit board 128 x 60 mm.


Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- · High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

Dimensions LV 25-1000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary

± 0.3 mm
4 holes Ø 4.2 mm
Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm

- Remarks
- I_s is positive when V_P is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.