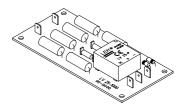


Voltage Transducer LV 25-1000/SP1

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data


E	lectrical data					
V _{PN} V _P	Primary nominal r.m.s Primary voltage, mea	1000 0 ± 1500		v v		
I _{PN} R _м	Primary nominal r.m.s Measuring resistance	8 R _{M min}	R _{Mmax}	mA		
IVI	with ± 12 V with ± 15 V	@ $\pm 1000 V_{max}$ @ $\pm 1500 V_{max}$ @ $\pm 1000 V_{max}$ @ $\pm 1500 V_{max}$	30 30 100 100	200 100	Ω Ω	
I _{SN} K _N V _C I _C V _d	Secondary nominal r. Conversion ratio Supply voltage (± 5 % Current consumption R.m.s. voltage for AC	25 mA 1000 V / 25 mA ± 12 15 \ 10 (@±15V) + I _s mA 4.1 k\				
Accuracy - Dynamic performance data						
\mathbf{X}_{G} Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25 ^{\circ}\mathrm{C}$			± 0.8		%	

ɛ ^G	Linearity	-	< 0.2		%
			Тур	Max ± 0.15	
I _o	Offset current @ $I_P = 0$, $T_A = 25 $ °C			± 0.15	mΑ
I _{ot}	Thermal drift of I	- 30℃ + 25℃	± 0.10	± 0.50	mΑ
01	Ű	+ 25℃ + 70℃			
t _r	Response time @ 90 % of ${f V}_{_{\sf PN}}$		40		μs

General data

T _A	Ambient operating temperature	- 30 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	3100 : 1000	
Р	Total primary power loss	8	W
\mathbf{R}_1	Primary resistance @ $T_A = 25 ^{\circ}\text{C}$	125	kΩ
Rs	Secondary coil resistance @ T _A = 70 °C	110	Ω
m	Mass	60	g
	Standards	EN 50178: 19	97

 $V_{_{\rm PN}} = 1000 V$

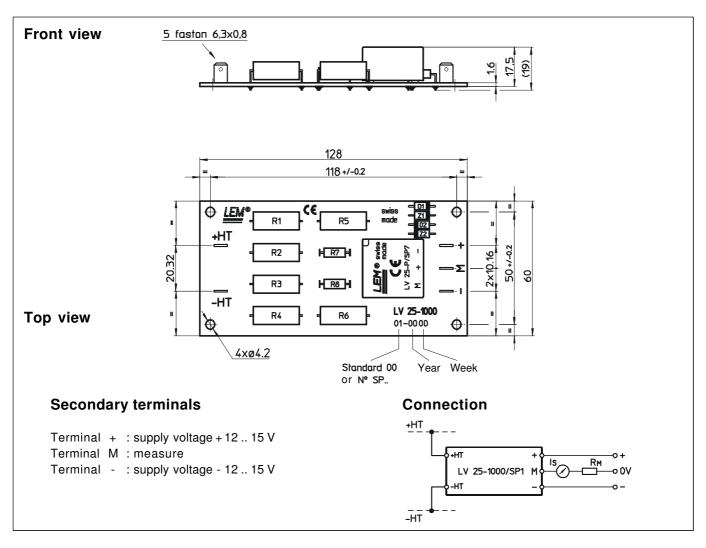
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Special features

- **T**₄ = 30 .. + 70 °C
- Coated
- Railway equipment.

Advantages


- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note : ¹⁾ Between primary and secondary.

Dimensions LV 25-1000/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary

±	0.	3	mı	n		

- 4 holes \varnothing 4.3 mm Faston 6.3 x 0.8 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.