

Voltage Transducer LV 25-1200

sed..., tage) $V_{PN} = 1200 \text{ V}$

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

\mathbf{V}_{PN}	Primary nominal voltage	erms	1200		V
V _{PM}	Primary voltage, measu	ring range	0 ± 1800		V
I _{PN}	Primary nominal current rms		6.7		mΑ
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$R_{\text{M min}}$	$R_{\text{M max}}$	
•••	with ± 12 V	@ ± 1200 V max	30	200	Ω
		@ ± 1800 V max	30	100	Ω
	with ± 15 V	@ ± 1200 V max	100	320	Ω
		@ ± 1800 V max	100	180	Ω
I _{SN}	Secondary nominal curr	ent rms	25		mA
K _N	Conversion ratio		1200	V : 25 mA	
V _c	Supply voltage (± 5 %)		± 12	. 15	V
I _c	Current consumption		10 (@ ± 15 V) + I _s mA		

Accuracy - Dynamic performance data

$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V_{PN} , $T_A = 25^{\circ}$	С	± 0.8		%
\mathcal{E}_{L}	Linearity error		< 0.2		%
			Тур	Max	
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.15	mΑ
I _{OT}	Temperature variation of I _o	- 25°C + 25°C	± 0.1	± 0.6	mΑ
	-	+ 25°C + 70°C	± 0.1	± 0.35	mΑ
$\mathbf{t}_{_{\mathrm{r}}}$	Response time to 90 % of \mathbf{V}_{PN} ste	р	60		μs

General data

T _A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N _P	Turns ratio	3700 : 1000	
P	Total primary power loss	8	W
$R_{_{1}}$	Primary resistance @ T _A = 25°C	180	$k\Omega$
R _s	Secondary coil resistance @ T _Δ = 70°C	110	Ω
m	Mass	60	g
	Standards	EN 50178: 1997	,

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Application domain

Industrial.

Voltage Transducer LV 25-1200

Isolation characteristics				
\mathbf{V}_{d} $\hat{\mathbf{V}}_{w}$	Rms voltage for AC isolation test ¹⁾ , 50 Hz, 1 min Impulse withstand voltage 1.2/50 µs	4.1 12	kV kV	
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group III b)	Min 13.8 13.8 < 175	mm mm	

Note: 1) Between primary and secondary.

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{_{\mathbf{W}}}$	Rated isolation voltage	Nominal voltage
Single isolation	1500 V	2500 V
Reinforced isolation	600 V	600 V

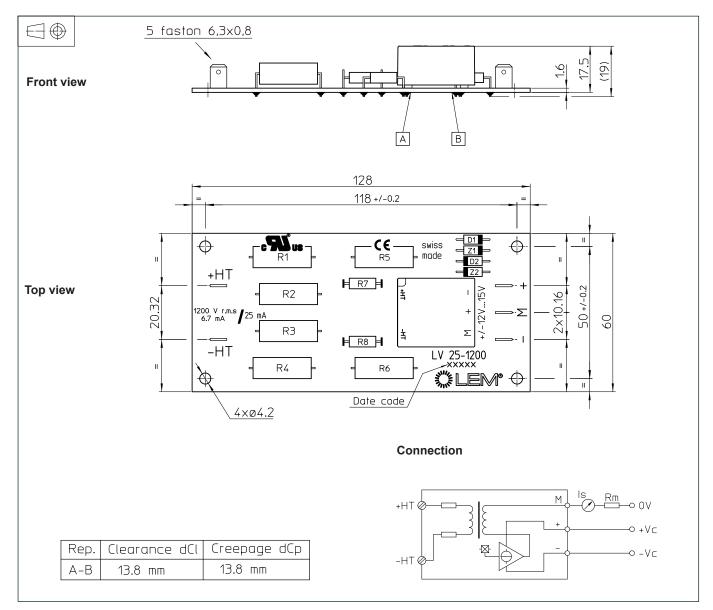
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LV 25-1200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

Transducer fastening 4 holes Ø 4.2 mm
 The mounting must be done on a adapted holder with four M4 screws

• Connection of primary Faston 6.3 x 0.8 mm

Connection of secondary Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.