

Voltage Transducer LV 25-200

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$oldsymbol{V}_{ ext{PN}} \ oldsymbol{V}_{ ext{P}} \ oldsymbol{I}_{ ext{PN}}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		200 0 ± 300 10		V V mA
\mathbf{R}_{M}	Measuring resistant	ce	\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	
	with ± 12 V	@ ± 200 V max	30	200	Ω
		@ ± 300 V max	30	100	Ω
	with ± 15 V	@ ± 200 V max	100	320	Ω
		@ ± 300 V _{max}	100	180	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		200 V	/ 25 mA	
V _c	Supply voltage (± 5 %)		± 12	15	V
I _C	Current consumption		10 (@±	15V) + I _S	mΑ
V _d	R.m.s. voltage for AC	C isolation test 1), 50 Hz, 1 mn	4.1		kV

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall Accuracy @ V_{PN} , $T_A = 25\%$ Linearity		± 0.8 < 0.2		% %
I _o	Offset current @ $\mathbf{I}_{\rm P} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 25°C + 25°C + 70°C	Typ = = ± 0.10 = ± 0.10 = =	Max ± 0.15 ± 0.60 ± 0.35	mA mA
t _r	Response time @ 90 % of \mathbf{V}_{PN}		15		μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	2500:1000		
Р	Total primary power loss	2	W	
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25 ℃	20	kΩ	
Rs	Secondary coil resistance @ T _A = 70 °C	110	Ω	
m	Mass	60	g	
	Standards	EN 50178 : 199	97	

Note: 1) Between primary and secondary.

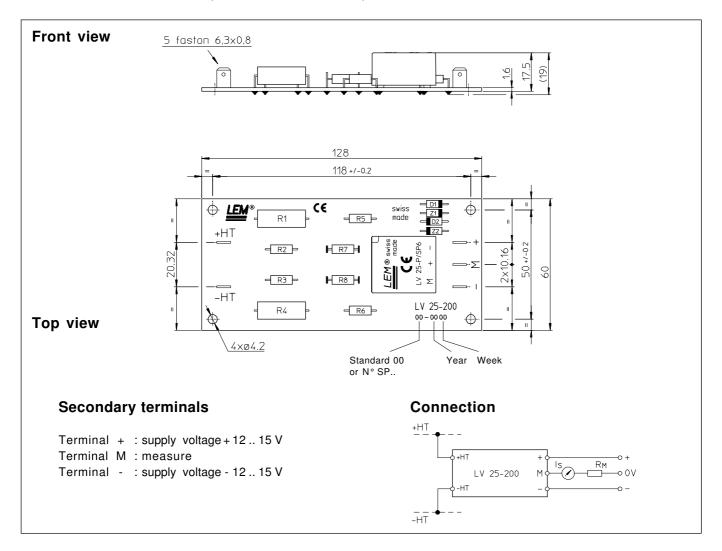
$V_{pN} = 200 \text{ V}$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

060912/5

Dimensions LV **25-200** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

· Connection of secondary

• General tolerance ± 0.3 mm

4 holes Ø 4.2 mm • Transducer fastening

4 M4 steel screws

Faston 6.3 x 0.8 mm

Recommended fastening torque 3.2 Nm or 2.36 Lb. - Ft.

Faston 6.3 x 0.8 mm Connection of primary

Remarks

- \bullet $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.