

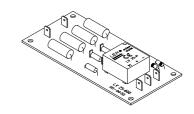
Voltage Transducer LV 25-600

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. vo Primary voltage, measuring Primary nominal r.m.s. cu Measuring resistance	ng range	600 0 ± 9 10 R _{M min}	00 R _{Mmax}	V V mA
	with ± 12 V	$@ \pm 600 \text{ V}_{max}$ $@ \pm 900 \text{ V}_{max}$	30 30	200 100	Ω
	with ± 15 V	@ $\pm 600 \text{ V}_{max}$ @ $\pm 900 \text{ V}_{max}$	100 100	320 180	Ω
I _{SN} K _N	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test 1), 50 Hz, 1 mn		25 600 V /	25 mA	mΑ
N ^c			± 12 10 (@± 4.1	15 15V)+ I _s	V mA kV

Accuracy - Dynamic performance data


\mathbf{E}_{L}^{G}	Overall Accuracy @ V_{PN} , $T_A = 25\%$ Linearity		± 0.8 < 0.2	% %
I _o	Offset current @ $\mathbf{I}_{\rm p}=0$, $\mathbf{T}_{\rm A}=25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25℃ + 25℃	Typ Max ± 0.15 ± 0.10 ± 0.60 ± 0.10 ± 0.35	mΑ
t,	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		15	μs

General data

$T_{_{A}}$	Ambient operating temperature	- 25 + 70	°C	
$\mathbf{T}_{\mathrm{s}}^{\mathrm{n}}$	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	2500 : 1000		
Р	Total primary power loss	6	W	
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25 ℃	60	kΩ	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70 ℃	110	Ω	
m	Mass	60	g	
	Standards	EN 50178 : 19	EN 50178 : 1997	

Note: 1) Between primary and secondary

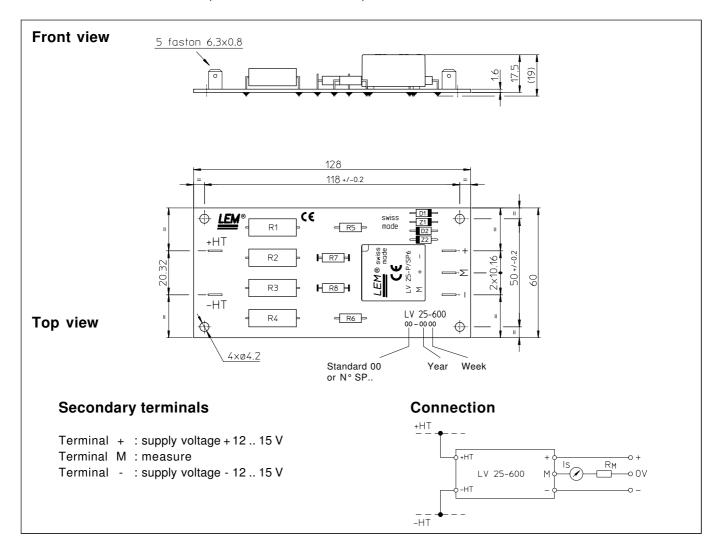
$V_{DN} = 600 \text{ V}$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

060718/5

Dimensions LV **25-600** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

ullet Fastening 4 holes \varnothing 4.2 mm

• Connection of primary Faston 6.3 x 0.8 mm

• Connection of secondary Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.