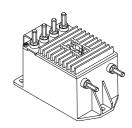


Voltage Transducer CV 3-1500


For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{DN} = 1000 \text{ V}$

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage	1000	V
V _P	Primary voltage, measuring range	0 ± 1500	V
V s	Secondary analog voltage @ V _{P max}	10	V
$\mathbf{K}_{\mathrm{N}}^{\mathrm{c}}$	Conversion ratio	1500 V/10 V	
R,	Load resistance	≥ 1	kΩ
C	Capacitive loading	≤ 5	nF
V _c	Supply voltage (± 5 %)	± 15	V
I _c	Current consumption	$32 + V_{s}/R_{L}$	mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	6	kV
V e	R.m.s. voltage for partial discharge extinction @ 10 pC	2	kV

Accuracy - Dynamic performance data

			Тур	Max	
$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V _{P max}	T _A = 25 °C		Max ± 0.2 ± 0.6 ± 5.0 ± 13.0	%
		- 40℃ + 85℃		± 0.6	%
V_{\circ}	Offset voltage @ $\mathbf{V}_{p} = 0$	T _A = 25 °C		± 5.0	m۷
		- 40℃ + 85℃		± 13.0	m۷
t,	Response time $^{1)}$ @ 90 % of $\mathbf{V}_{P\;max}$		0.4		μs
dv/dt	dv/dt accurately followed		900		V/µs
f	Frequency bandwidth (- 1 dB) @ 33 % of $\mathbf{V}_{_{\mathrm{PN}}}$		DC 8	300	kHz

General data

T_A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
P	Total primary power loss	2.8	W
$\mathbf{R}_{_{1}}$	Primary resistance	360	$k\Omega$
m	Mass	560	g
	Standards	EN 50155	

Features

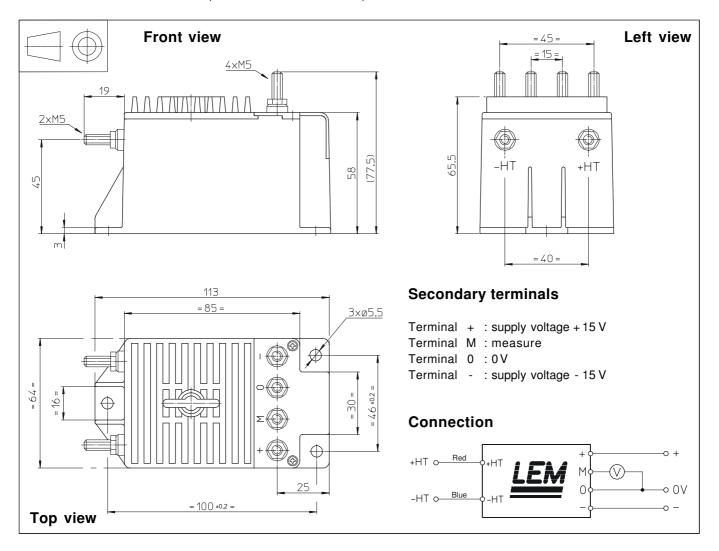
- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- · High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.


Note: 1) With a dv/dt of 900 V/µs

060809/8

LEM www.lem.com

Dimensions CV 3-1500 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- · Connection of primary
- Connection of secondary
- Fastening torque max
- ± 0.3 mm
- 3 holes Ø 5.5 mm
- 3 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.

M5 threaded studs

M5 threaded studs

2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet $\mathbf{V}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- CEM tested with a shielded secondary cable. Shield connected to 0 V at both ends, or disconnected.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.