
Voltage Transducer CV 3-200/SP5

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$\mathbf{V}_{_{\mathrm{PN}}}$	Primary nominal r.m.s. voltage	140	V
V _P	Primary voltage, measuring range	0 ± 200	V
v s	Secondary analog voltage @ V _{P max}	10	V
K _N	Conversion ratio	200 V/10 V	
R,	Load resistance	≥ 1	$k\Omega$
C	Capacitive loading	≤ 5	nF
V _c	Supply voltage (± 10 %)	± 15 24	V
I _c	Current consumption	$32 + V_{s}/R_{1}$	mΑ
$\dot{\mathbf{V}_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	2.5	kV
V e	R.m.s. voltage for partial discharge extinction		
Ü	@ 10 pC	2	kV

Accuracy - Dynamic performance data

			Max	
$\mathbf{X}_{_{\mathrm{G}}}$	Overall accuracy @ V _{P max}	T _A = 25℃	± 0.2	%
		- 25℃ + 75℃	± 0.5	%
$\mathbf{V}_{_{\mathrm{O}}}$	Offset voltage @ $\mathbf{V}_{P} = 0$	$T_A = 25^{\circ}$	± 5	mV
		- 25℃ + 75℃	± 10	mV
t,	Response time 1) @ 90 % of V _{PN}		0.4	μs
dv/dt	dv/dt accurately followed		160	V/µs
f	Frequency bandwidth (- 3 dB) @ \	/ PN	DC 700	kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 75	${\mathbb C}$
T_s	Ambient storage temperature	- 40 + 85	${\mathfrak C}$
P	Total primary power loss	3.1	W
$R_{_1}$	Primary resistance	6.4	$k\Omega$
m	Mass	0.65	kg
	Standards	EN 50155	

Features

- Closed loop (compensated) voltage transducer
- Isolated plastic case recognized according to UL 94-V0
- Patent pending.

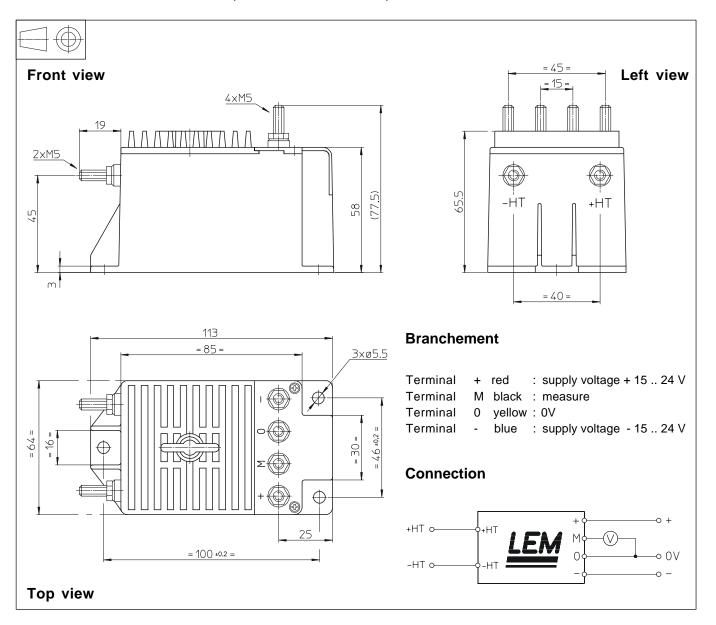
Special features

- $V_{c} = \pm 15 ... 24 (\pm 10 \%) V$
- $V_d = 2.5 \text{ kV}$ $T_A = -25\% ... + 75\%$
- VRT Burn-in
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note: $^{1)}$ With a dv/dt of 200 V/ μ s.

070404/6

Dimensions CV 3-200/SP5 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

 General tolerance ± 0.3 mm • Transducer fastening 3 holes Ø 5.5 mm M5 steel screens Fastening torque max

• Connection of primary and secondary M5 threaded studs Fastening torque max

3.8 Nm or 2.8 Lb. -Ft. 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{V}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- CEM tested with a shielded secondary cable. Shield connected to 0 V at both ends, or disconnected.