
Voltage Transducer LV 200-AW/2/1600

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 1600 \text{ V}$

Electrical data

$oldsymbol{V}_{ ext{PN}} \ oldsymbol{V}_{ ext{P}} \ oldsymbol{R}_{ ext{M}}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Measuring resistance		1600 0 ± 24 R _{M min}	400 R _{M max}	V V
	with ± 15 V	@ ± 1600 V _{max}	0	120	Ω
		@ ± 2400 V _{max}	0	60	Ω
	with ± 24 V	@ ± 1600 V _{max}	60	220	Ω
		@ ± 2400 V _{max}	60	110	Ω
I _{SN}	Secondary nominal r.m.s. current		80		mΑ
K _N	Conversion ratio		1600 V / 80 mA		
v c	Supply voltage (± 5 %)		± 15	24	V
	Current consumption		30@±2	24V)+ I _s	mΑ
Ι _C	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾	Ü	kV
ŭ			1 ²⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial di	scharges extinction @ 50 pC	2.5		kV

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle{L}}$	Overall Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25 °C Linearity		± 1.0 < 0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25 °C Thermal drift of $\mathbf{I}_{\rm O}$	- 25℃ + 70℃	Тур ± 0.3	Max ± 0.3 ± 0.6	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{P}\;\mathrm{max}}}$		120		μs

General data

$T_{_{A}}$	Ambient operating temperature	- 25 + 70	°C
$\mathbf{T}_{\mathrm{S}}^{\mathrm{n}}$	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	40000 : 2500	
Р	Total primary power loss	8	W
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25 °C	320	$k\Omega$
Rs	Secondary coil resistance @ T _A = 70 °C	40	Ω
m	Mass	2	kg
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R₁ incorporated into the housing.

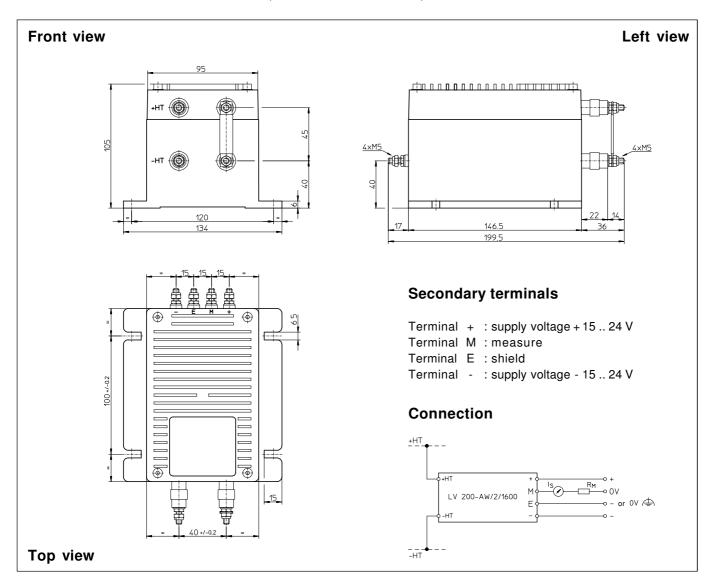
Advantages

- · Good accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) A list of corresponding tests is available

980710/3

Dimensions LV 200-AW/2/1600 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- ± 0.5 mm 4 holes Ø 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.