
# Voltage Transducer LV 200-AW/2/400

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).





## $V_{PN} = 400 \text{ V}$



#### **Electrical data**

| $oldsymbol{V}_{\scriptscriptstylePN} \ oldsymbol{V}_{\scriptscriptstyleP} \ oldsymbol{R}_{\scriptscriptstyleM}$ | Primary nominal r.m.s. voltage Primary voltage, measuring range Measuring resistance                                      |                                                                                                                          | 400<br>0 ± 600<br><b>R</b> <sub>M min</sub> <b>R</b> <sub>M max</sub> |                                                | V<br>V              |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|---------------------|
| М                                                                                                               | with ± 15 V with ± 24 V                                                                                                   | @ $\pm 400 \text{ V}_{max}$<br>@ $\pm 600 \text{ V}_{max}$<br>@ $\pm 400 \text{ V}_{max}$<br>@ $\pm 600 \text{ V}_{max}$ | 0<br>0<br>60<br>60                                                    | 120<br>60<br>220<br>110                        | Ω<br>Ω<br>Ω         |
| I <sub>SN</sub> K <sub>N</sub> V <sub>C</sub> I <sub>C</sub> V <sub>d</sub>                                     | Secondary nominal r.m.s<br>Conversion ratio<br>Supply voltage (± 5 %)<br>Current consumption<br>R.m.s. voltage for AC iso | . current                                                                                                                | ± 15                                                                  | ′ 80 mA<br>24<br>24 V) + <b>I</b> <sub>S</sub> | mA<br>V<br>mA<br>kV |
| $\mathbf{V}_{\mathrm{e}}$                                                                                       | R.m.s. voltage for partial di                                                                                             | scharges extinction @ 50 pC                                                                                              | 2.5                                                                   |                                                | kV                  |

## **Accuracy - Dynamic performance data**

| $\overset{\boldsymbol{x}_{\scriptscriptstyle{G}}}{\boldsymbol{\epsilon}_{\scriptscriptstyle{L}}}$ | Overall Accuracy @ $V_{PN}$ , $T_A = 25  ^{\circ}C$ Linearity                                                 |             | ± 1.0 < 0.1  |                       | %<br>%   |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------------|----------|
| I <sub>о</sub><br>I <sub>от</sub>                                                                 | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25 °C Thermal drift of $\mathbf{I}_{\rm O}$ | - 25℃ + 70℃ | Typ<br>± 0.3 | Max<br>± 0.3<br>± 0.6 | mA<br>mA |
| $\mathbf{t}_{_{\mathrm{r}}}$                                                                      | Response time @ 90 % of $\mathbf{V}_{_{\mathrm{P}\;\mathrm{max}}}$                                            |             | 50           |                       | μs       |

#### General data

| $\mathbf{T}_{A}$             | Ambient operating temperature                     | - 25 + 70    | °C        |
|------------------------------|---------------------------------------------------|--------------|-----------|
| $\mathbf{T}_{\mathrm{s}}^{}$ | Ambient storage temperature                       | - 40 + 85    | °C        |
| N                            | Turns ratio                                       | 10000 : 2500 |           |
| Р                            | Total primary power loss                          | 8            | W         |
| $\mathbf{R}_{_{1}}$          | Primary resistance @ T <sub>A</sub> = 25 °C       | 20           | $k\Omega$ |
| Rs                           | Secondary coil resistance @ T <sub>A</sub> = 70°C | 40           | Ω         |
| m                            | Mass                                              | 2            | kg        |
|                              | Standards 3)                                      | EN 50178     |           |
|                              |                                                   |              |           |

## **Features**

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R<sub>1</sub> incorporated into the housing.

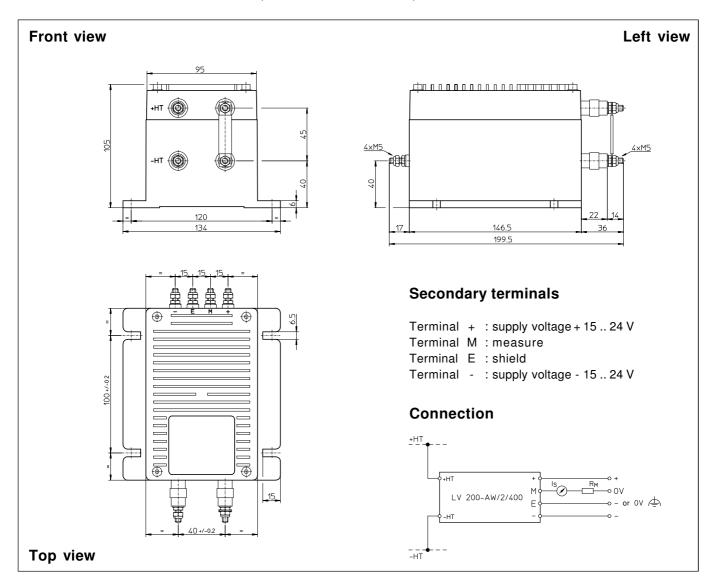
## **Advantages**

- · Good accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference
- Current overload capability.

### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) A list of corresponding tests is available

980710/3



## **Dimensions** LV 200-AW/2/400 (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- ± 0.5 mm 4 holes Ø 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

#### Remarks

- $\mathbf{I}_{\mathrm{S}}$  is positive when  $\mathbf{V}_{\mathrm{P}}$  is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.