
Voltage Transducer LV 200-AW/2/800

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 800 \text{ V}$

Electrical data

$oldsymbol{V}_{\scriptscriptstylePN} \ oldsymbol{V}_{\scriptscriptstyleP} \ oldsymbol{R}_{\scriptscriptstyleM}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Measuring resistance		800 0 ± 12 R _{M min}	200 R _{Mmax}	V V	
	with ± 15 V	@ ± 800 V _{max}	0	120	Ω	
		@ ± 1200 V _{max}	0	60	Ω	
	with ± 24 V	@ ± 800 V _{max}	60	220	Ω	
		@ ± 1200 V _{max}	60	110	Ω	
I _{SN}	Secondary nominal r.m.s. current		80		mΑ	
K _N	Conversion ratio		800 V /	80 mA		
v c	Supply voltage (± 5 %)		± 15	24	V	
I _C	Current consumption			$30(@\pm 24 V) + I_S mA$		
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾	· ·	kV	
-			1 ²⁾		kV	
\mathbf{V}_{e}	R.m.s. voltage for partial dis	scharges extinction @ 50 pC	2.5		kV	

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{\scriptscriptstyle{G}}}{\boldsymbol{\epsilon}_{\scriptscriptstyle{L}}}$	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$ Linearity		± 1.0 < 0.1		% %
I _O	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25℃ + 70℃	Typ ± 0.3	Max ± 0.3 ± 0.6	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{P}\;\mathrm{max}}}$		70		μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T_s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	20000 : 2500	
Р	Total primary power loss	8	W
R,	Primary resistance @ T _A = 25 °C	80	$k\Omega$
R _s	Secondary coil resistance @ T _A = 70 °C	40	Ω
m	Mass	2	kg
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R₁ incorporated into the housing.

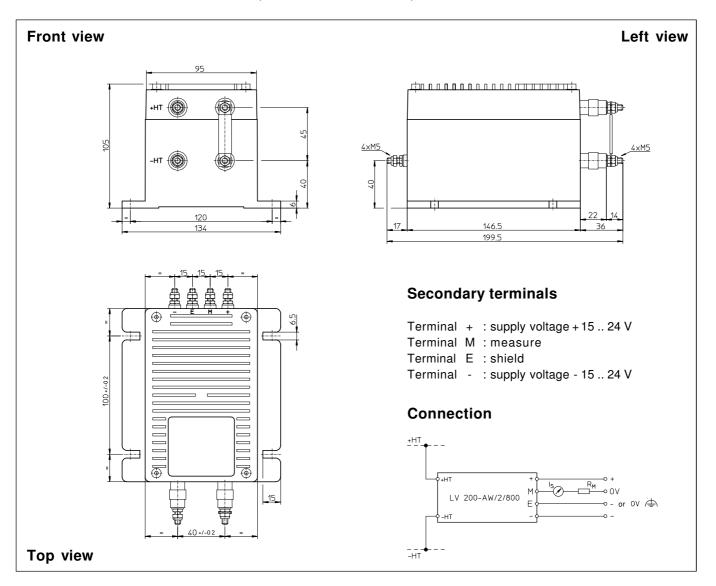
Advantages

- · Good accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) A list of corresponding tests is available

980710/3

Dimensions LV 200-AW/2/800 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- · Connection of secondary
- Fastening torque
- ± 0.5 mm 4 holes Ø 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.