

RT 2000

Flexible split-core Rogowski coil for the electronic measurement of AC waveform currents, with galvanic isolation between the primary circuit (power) and the secondary circuit (measurement).

The patented **Perfect Loop Technology** definitely solves the problem of the Rogowski coil opening by introducing a specific magnetic device. This dramatically reduces both the error due to the position of the measured conductor within the sensor, and the error due to the proximity of external conductors.

Electrical data

Primary nominal current rms	2000	A µH
Transici ratio (± 5 70)		μιι
Output voltage (instantaneous) 2)	$\mathbf{V}_{\text{OUT}} = \mathbf{M} \times \frac{\text{dI}}{\text{dt}}_{\text{P}}$	V
Output voltage (sinusoidal wave) 2)	$\mathbf{V}_{\text{OUT}} = 2 \times \pi \times M \times f \times \mathbf{I}_{\text{PAC}}$	V
Example: @ 50 Hz, 2000 A	$V_{OUT} = 2 \times \pi \times 64 \times 10^{-9} \times 50 \times 2000 = 40.3$	2 mV
Coil inductance (± 5 %)	190	μΗ
Coil resistance @ T _A = 20°C typical	60	Ω
High cut-off frequency 2) (+3dB)	500	kHz
	Transfer ratio (± 5 %) ¹⁾ Output voltage (instantaneous) ²⁾ Output voltage (sinusoidal wave) ²⁾ Example: @ 50 Hz, 2000 A Coil inductance (± 5 %) Coil resistance @ T _A = 20°C typical	Transfer ratio (\pm 5 %) ¹⁾ 0.064 Output voltage (instantaneous) ²⁾ $\mathbf{V}_{\text{OUT}} = \mathbf{M} \times \frac{\text{dl}}{\text{dt}}_{\text{P}}$ Output voltage (sinusoidal wave) ²⁾ $\mathbf{V}_{\text{OUT}} = 2 \times \pi \times \text{M} \times \text{f} \times \mathbf{I}_{\text{PAC}}$ Example: @ 50 Hz, 2000 A $\mathbf{V}_{\text{OUT}} = 2 \times \pi \times 64 \times 10^9 \times 50 \times 2000 = 40.30$ Coil inductance (\pm 5 %) 190 Coil resistance @ $\mathbf{T}_{\text{A}} = 20^{\circ}\text{C}$ typical 60

Accuracy - Dynamic performance data

$\mathcal{E}_{_{1}}$	Linearity error	none	
TCM	Temperature coefficient of M	30	ppm/K
\mathcal{E}_{P}	Positioning error 3) max	0.65	%

General data

\mathbf{T}_{A}	Ambient operating temperature (90 % rH)		H) - 10 + 65	°C
$T_{\rm s}$	Ambient storage temperature		- 25 + 70	°C
m	Mass		90	g
IPXX	Protection index		IP 2X	
	Standards	Safety	IEC 61010-1: 2001 2nd	edition
		-	IEC61010-2-032: 2002	

- Notes: 1) LEM provides uncalibrated coils with up to 5 % manufacturing tolerance. Calibration must be performed within the final application.
 - 2) Open circuit condition (no load)
 - 3) Considering a primary conductor of at least Ø 15 mm, perpendicular to the RT loop.

Features

- · Split core type
- Ø 125 mm sensing aperture for non-contact measurement
- 1.5 m output cable
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Thin, lightweight and flexible
- Easy installation suitable even for the most confined spaces
- Very low positioning error.

Applications

- Power meters Current measurement for active Power calculation.
- Energy sub-meters For energy efficiency monitoring, consumption analysis and costs allocation.
- Power quality monitoring
- Condition monitoring (e.g. Motor loads such as conveyers, pumps or HVAC).
- Distributed measurement systems.

Application domain

· Energy Solutions.

IEC61010-031:2002+Amd 1:2008

RT 2000

Iso	lation characteristics		
V _b	Rated isolation voltage rms ¹⁾ with IEC 61010-1 standards and following cond - Reinforced isolation - Over voltage category CAT III - Pollution degree PD2 - Heterogeneous field	300 litions:	V
V _d	Rms voltage for AC isolation test ²⁾ , 50 Hz, 1 min	3.5	kV
V _w	Impulse withstand voltage 1.2/50 μs	6.5 Min	kV
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (group I) 3)	6 6 600	mm mm V
CII	Comparative Tracking index (group i) 9	000	V

Notes:

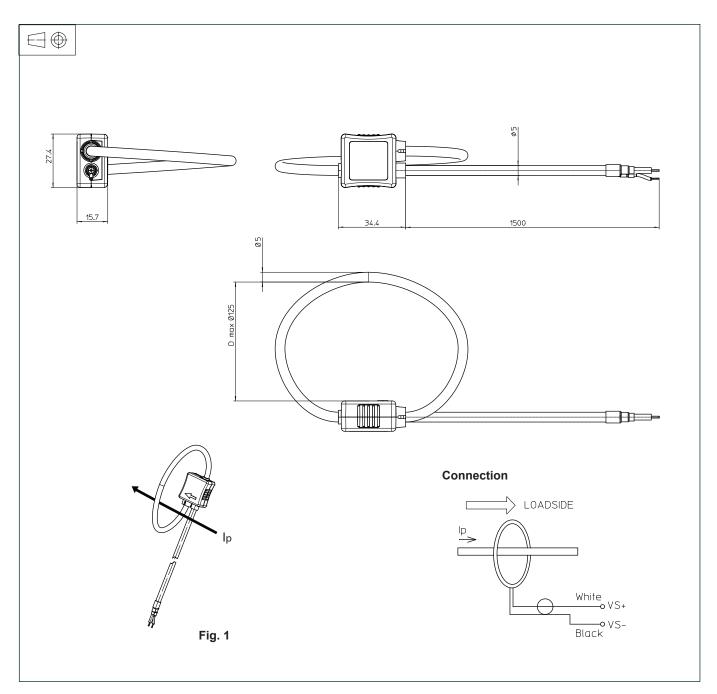
- ¹⁾ Between primary conductor and ground. If isolated cable is used for the primary circuit, the voltage category could be improved according to the primary cable insulation category (please refer to the cable manufacturer's indications)
- ²⁾ Between primary (completely filling the hole) and secondary
- 3) Plastic parts.

Safety and warning notes

In order to guarantee safe operation of the transducer and to be able to make proper use of all features and functions, please read these instructions thoroughly! Safe operation can only be guaranteed if the transducer is used for the purpose it has been designed for and within the limits of the technical specifications. Ensure you get up-to-date technical information that can be found in the latest associated datasheet under www.lem.com.

Caution! Risk of danger

Ignoring the warnings can lead to serious injury and/or cause damage! The electric measuring transducer may only be installed and put into operation by qualified personnel that have received an appropriate training. The corresponding national regulations shall be observed during installation and operation of the transducer and any electrical conductor. The transducer shall be used in electric/electronic equipment with respect to applicable standards and safety requirements and in accordance with all the related systems and components manufacturers' operating instructions.


Caution! Risk of electrical shock

When operating the transducer, certain parts of the module may carry hazardous live voltage (e.g. primary conductor). The user shall ensure to take all measures necessary to protect against electrical shock. The transducer is a build-in device containing conducting parts that shall not be accessible after installation. A protective enclosure or additional insulation barrier may be necessary. Installation and maintenance shall be done with the main power supply disconnected except if there are no hazardous live parts in or in close proximity to the system and if the applicable national regulations are fully observed.

Safe and trouble-free operation of this transducer can only be guaranteed if transport, storage and installation are carried out correctly and operation and maintenance are carried out with care.

Dimensions RT 2000 (in mm.)

Mechanical characteristics

General tolerance ± 1 mm
 Output cable length 1500 mm

WARNING!

Do not stress the coil by applying any kind of mechanical force (ie. twisting, puncturing, excessive pressure, tight bending, etc.) which will dramatically degrade the device's accuracy.

Remarks

- $V_{OUT} = V_{S+} V_{S-}$ is positive when di_p/dt flows in the direction of the arrow (see fig. 1)
- Due to low positioning error (ε_p), the device does not need to be physically fastened around the primary conductor. Should the device be secured, make sure no mechanical stress is applied to the coil itself.