

Current Transducer LA 205-S/SP6

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

_				
	∆∩t	rical	l da	to
	CUL	ııcaı	ı ua	ιa

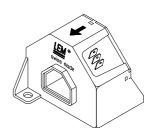
I _{PN}	Primary nominal r.m.s. current			200			A
I _P	Primary current, measuring range			0 ± 300			Α
Î _{P max}	Measuring overload 1)			600			Α
R _M	Measuring resistance @		$T_A = 7$	70℃	T _A =	85℃	
			R _{M min}	\mathbf{R}_{Mmax}	R _{M min} I	$R_{\text{M max}}$	
	with ± 12 V	$@ \pm 200 A_{max}$	0	68	0	66	Ω
		@ ± 300 A _{max}	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A _{max}	5	95	5	93	Ω
		@ ± 300 A max	5	50	5	49	Ω
\mathbf{I}_{SN}	Secondary nominal r.m.s.	current		100)	1	mΑ
K _N	Conversion ratio			1:	2000		
V _c	Supply voltage (± 5 %)			± 1	2 15		٧
I _C	Current consumption			20	@ ± 15	V)+I _s	mΑ
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 mr	า	6			kV

Accuracy - Dynamic performance data

R.m.s. rated voltage 2), safe separation

0	marral data	·		·	
f	Frequency bandwidth (- 3 dB)		DC 1	00	kHz
di/dt	di/dt accurately followed		> 100		A/μs
t _r	Response time $^{4)}$ @ 90 % of \mathbf{I}_{PN}		< 1		μs
t _{ra}	Reaction time @ 10 % of I_{PN}		< 500		ns
I_{OT}	Thermal drift of \mathbf{I}_{\odot}	- 40℃ + 85℃	± 0.20	± 0.50	mΑ
I_{OM}	Residual current 3) @ $I_p = 0$, after an	overload of 3 x I_{PN}		± 0.50	mΑ
I_{\circ}	Offset current @ $I_P = 0$, $T_A = 25$ °C			± 0.15	
			Тур	Max ± 0.15	
$oldsymbol{arepsilon}_{\scriptscriptstyle L}$	Linearity		< 0.1		%
\mathbf{E}_{G}	Overall accuracy @ I_{PN} , $T_A = 25$ °C		± 0.8		%

basic isolation


General data

	General data			
T _A	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 50 + 90	°C
$\ddot{R_{\mathrm{s}}}$	Secondary coil resistance @	T _A = 70 °C	35	Ω
_		T _A = 85 °C	37	Ω
m	Mass		150	g
	Standards 5)		EN 50155 (01.	11.95)

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- $^{\scriptscriptstyle 4)}$ With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

 $I_{pN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $T_A = -40 \,^{\circ}\text{C} .. + 85 \,^{\circ}\text{C}$
- Connection to secondary circuit on Faston 6.3 x 0.8 mm
- Railway equipment.

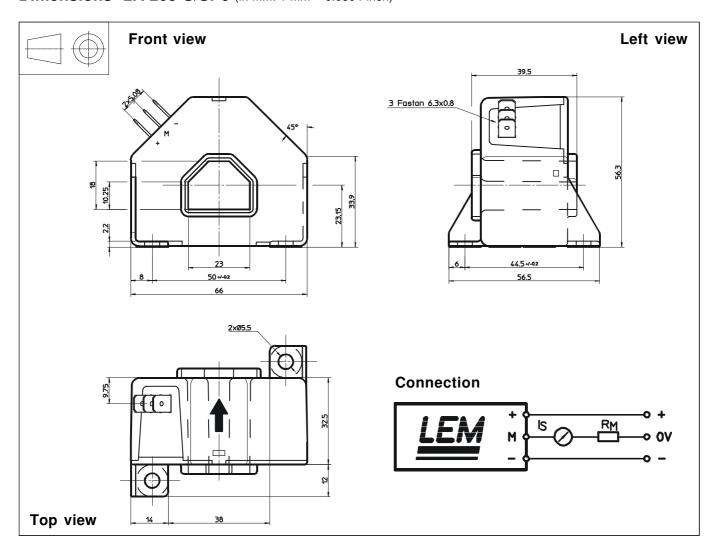
Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060705/7


page 1/2

1625

3250

Dimensions LA 205-S/SP6 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Trasnducer fastening

Fastening torque max

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.

23 x 18 mm

Faston 6.3 x 0.8 mm

Remarks

- \bullet ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.