

Current Transducer LA 305-S/SP19

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 500 A$

16236	3
-------	---

EI	ectrical data						
I _{PN}	Primary nominal r.m.s. current		500	0		A	
	Primary current, measuring range (@ ± 24V)			0 ± 1000			Α
I _P Î _P	Overload capability during 10 ms			40			kΑ
$\dot{\mathbf{R}}_{_{\mathrm{M}}}$	Measuring resistance @		$T_{\Delta} = 1$	70°C	T _Δ =	: 85°C	;
141			\mathbf{R}_{Mmin}^{n}	\mathbf{R}_{Mmax}			
	with ± 15 V	@ \pm 600 A _{max}	0	13	0	10	Ω
		@ ± 650 A _{max}	0	8	0	5	Ω
		@ ± 680 A _{max}	0	6	0	3	Ω
	with ± 24 V	@ ± 600 A _{max}	3	13	3	10	Ω
		@ ± 950 A _{max}	3	8	3	5	Ω
		@ ± 1000 A max	3	6	3	3	Ω
I _{SN}	Secondary nominal r.m.s.	current		142	2.8		mΑ
K _N	Conversion ratio			1:	3500		
v °	Supply voltage (± 5 %)			± 1	5 24	ļ	V
	Current consumption			28	(@ ±24	V) + I _s	mΑ
Λ ^q	R.m.s. voltage for AC isol	ation test, 50 Hz, 1	mn	6		3	kV
٧.	R.m.s. voltage for partial dis	scharges extinction @	0 10 pC	< 2	.8		kV

A	ccuracy - Dynamic per	formance data			
X _G	Overall accuracy @ I _{PN} , T _A =	: 25℃	± 0.8		%
\mathbf{E}_{L}^{G}	Linearity		< 0.1		%
			Тур	Max	
I _O	Offset current @ $I_p = 0$, $T_A =$	25℃		Max ± 0.15 ± 0.30	m₽
I _{OM}	Residual current 1) @ $\mathbf{I}_{p} = 0$, a	after an overload of 3 x I _{PN}		± 0.30	m₽
I _{OT}	Thermal drift of I	- 40℃ + 70℃	± 0.30	± 0.60	
	-	- 50℃ + 85℃		± 0.80	m₽

"ОМ	ricoldual culterit & Ip = 0, alter a	II OVCIIOAG OI O X I _{PN}	± 0.00	1117 \
I _{OT}	Thermal drift of I	- 40℃ + 70℃	± 0.30 ± 0.60	mΑ
	·	- 50℃ + 85℃	± 0.80	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}		< 500	ns
t _r	Response time 2 @ 90 % of I _{PN}		< 1	μs
di/dt	di/dt accurately followed		> 100	A/μs
f	Frequency bandwidth (- 3 dB)		DC 100	kHz

General data

T _A	Ambient operating temperature		- 40 (- 50) ³⁾ +	85 °C
$T_{\rm s}$	Ambient storage temperature		- 50 + 90	°C
T _s R _s	Secondary coil resistance @	T _△ = 70 °C	70	Ω
3		T _^ = 85 ℃	73	Ω
m	Mass	^	350	g
	Standards		EN 50155	_

 $\underline{\text{Notes}}$: $^{\text{1)}}$ The result of the coercive field of the magnetic circuit

²⁾ With a di/dt of 100 A/µs

³⁾ No guarantee on this value, tests not carried out during production.

Features

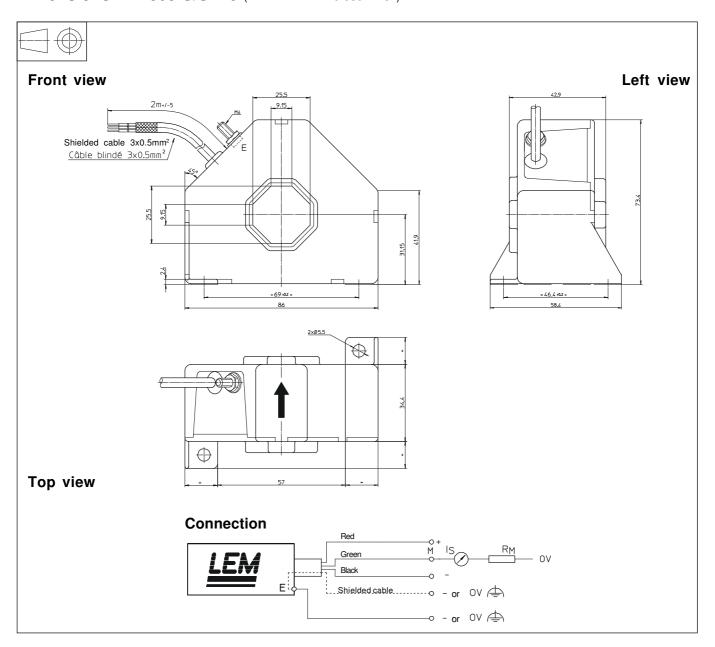
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Copyright protected.

Special features

- \bullet $I_{PN} = 500 A$
- $I_P = 0 .. \pm 1000 \text{ A } (@ \pm 24 \text{ V})$
- $\mathbf{K}_{N} = 1:3500$
- $V_{c} = \pm 15 ... 24 (\pm 5 \%) V$
- $T_A^{-} = -40 \,^{\circ}\text{C} (-50 \,^{\circ}\text{C})^{-3} ... + 85 \,^{\circ}\text{C}$
- Connection to secondary circuit on shielded cable 3 x 0.5 mm²
- Internal shield connected to shielded cable
- Serigraphy with customer specification number
- Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060911/3

Dimensions LA 305-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- Connection of screen Fastening torque, max.
- ± 0.5 mm
- 2 holes Ø 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.

25.5 x 25.5 mm

shielded cable 3 x 0.5 mm²

M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- \bullet $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{I}_{_{\mathrm{P}}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.