

Current Transducer LA 305-S/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16321

Electrical data

\mathbf{I}_{PN}	Primary nominal r.m.s. current		300				Α
I _P	Primary current, measuring range		0 ± 500			Α	
$\dot{\mathbf{R}}_{M}$	Measuring resistance @		$T_{A} =$	70℃	T _A :	= 85°C	2
			\mathbf{R}_{Mmir}	\mathbf{R}_{Mmax}	R _{M min}	\mathbf{R}_{Mmax}	
	with ± 12 V	@ \pm 300 A _{max}	0	46	0	44	Ω
		@ ± 500 A _{max}	0	14	0	12	Ω
	with ± 15 V	@ $\pm 300 \text{ A}_{max}$	0	70	5	68	Ω
		$@ \pm 500 A_{max}$	0	28	5	26	Ω
I_{SN}	Secondary nominal r.m.s. current			120	0		mΑ
K _N	Conversion ratio		1:2500				
v _c	Supply voltage (± 5 %	%)	± 12 15		V		
I _C	Current consumption	1	20 (@ ±15 V) + I _s		mA		
$\mathbf{V}_{_{b}}$	R.m.s. rated voltage 1), safe separation			17	50	Ü	V
-		basic isolation		350	00		V

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25 ℃	± 0.8		%
\mathbf{x}_{G}	Linearity	< 0.1		%
		Тур	Max	
Io	Offset current @ $I_p = 0$, $T_A = 25$ °C		± 0.20	mΑ
I _{OM}	Residual current ²⁾ @ $I_p = 0$, after an overload of 3 x	l _{PN}	± 0.40	mΑ
I _{OT}	Thermal drift of I_{\odot} - 25 °C + 85 °C	± 0.12	± 0.40	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns
t,	Response time 3 @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed	> 100		$A/\mu s \\$
f	Frequency bandwidth (- 3 dB)	DC ⁻	100	kHz

General data

T _A	Ambient operating temperature		- 25 + 85	°C
$T_{\rm s}$	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70 ^{\circ}C$	35	Ω
Ü		T _A = 85 °C	37	Ω
m	Mass		200	g
	Standards		EN 50155	

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs.

$I_{PN} = 300 A$

Features

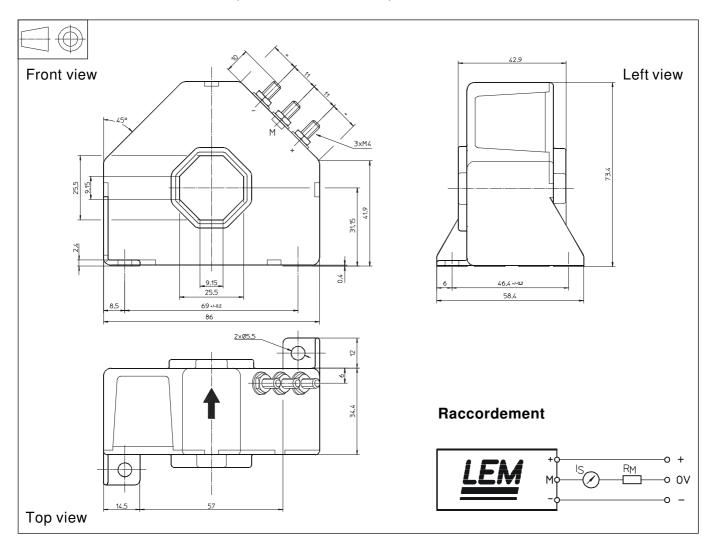
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special feature

- $T_{\Delta} = -25$ °C .. + 85 °C
- Connection secondary on 3 M4 threaded studs
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070802/4

Dimensions LA 305-S/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary Fastening torque
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 25.5 x 25.5 mm

M4 threaded studs

1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.