

May 2007

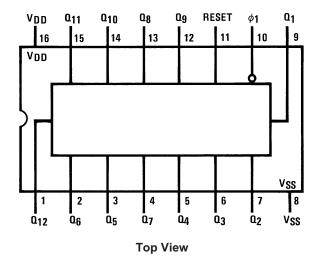
CD4040BC, 12-Stage Ripple Carry Binary Counters CD4060BC, 14-Stage Ripple Carry Binary Counters

Features

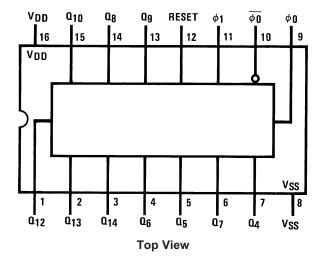
- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (Typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Medium speed operation: 8MHz typ. at V_{DD} = 10V
- Schmitt trigger clock input

General Description

The CD4060BC is a 14-stage ripple carry binary counter, and the CD4040BC is a 12-stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical "1" at the reset input independent of clock.

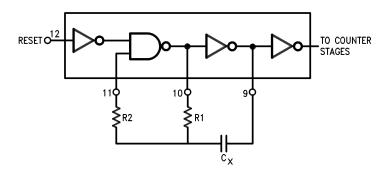

Ordering Information

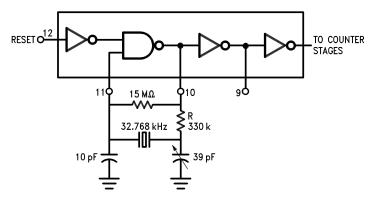
Order Number	Package Number	Package Description
CD4040BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4060BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4060BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

Connection Diagrams

Pin Assignments for DIP and SOIC CD4040BC


Pin Assignments for DIP and SOIC CD4060BC


Schematic Diagrams CD4040BC RESET 16 = V_{DD} CD4060BC $\overline{\phi_0}$ 10 $_{8}$ = v_{ss} 16 = V_{DD}

CD4060B Typical Oscillator Connections

RC Oscillator

Crystal Oscillator

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{DD}	Supply Voltage	-0.5V to +18V
V _{IN}	Input Voltage	-0.5V to V _{DD} +0.5V
T _S	Storage Temperature Range	−65°C to +150°C
P _D	Package Dissipation	
	N Package	700mW
	M Package	500 mW
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Note:

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{DD}	Supply Voltage	+3V to +15V
V _{IN}	Input Voltage	0V to V _{DD}
T _A	Operating Temperature Range	–55°C to +125°C

^{1.} $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics⁽²⁾

			−55°C		+25°C			+125°C		
Symbol	Parameter	Conditions	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
I _{DD}	I _{DD} Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5			5		150	μA
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10			10		300	
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20			20		600	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
	Output Voltage	V _{DD} = 10V		0.05		0	0.05		0.05	
		V _{DD} = 15V		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
	Output Voltage	V _{DD} = 10V	9.95		9.95	10		9.95		
		V _{DD} = 15V	14.95		14.95	15		14.95		
V _{IL}	V _{IL} LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	V
		$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4	3.0		3.0	
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6	4.0		4.0	
V_{IH}	HIGH Level Input	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		V
	Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0]
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		
I_{OL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		mA
	Output Current ⁽³⁾	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH} HIGH Level Output Current ⁽³⁾	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		mA	
	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9			
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V$, $V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	

Note:

- 2. $V_{SS} = 0V$ unless otherwise specified.
- 3. Data does not apply to oscillator points ϕ_0 and $\overline{\phi}_{\overline{0}}$ of CD4060BC. I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics⁽⁴⁾

CD4040BC T_A = 25°C, C_L = 50pF, R_L = 200k Ω , $t_{\rm r}$ = $t_{\rm f}$ = 20 ns, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PHL1} , t _{PLH1}	Propagation Delay Time to Q ₁	$V_{DD} = 5V$		250	550	ns
		$V_{DD} = 10V$		100	210	7
		$V_{DD} = 15V$		75	150	7
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	
		$V_{DD} = 15V$		45	90	1
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	7
		$V_{DD} = 15V$		40	80	7
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		125	335	ns
		$V_{DD} = 10V$		50	125	1
		$V_{DD} = 15V$		40	100	1
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	1
		$V_{DD} = 15V$			No Limit	1
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1.5	4		MHz
		$V_{DD} = 10V$	4	10		1
		$V_{DD} = 15V$	5	12		7
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
· /		$V_{DD} = 10V$		100	210	1
		$V_{DD} = 15V$		80	170	1
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
()		$V_{DD} = 10V$		100	210	1
		$V_{DD} = 15V$		80	170	1
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

Note:

4. AC Parameters are guaranteed by DC correlated testing.

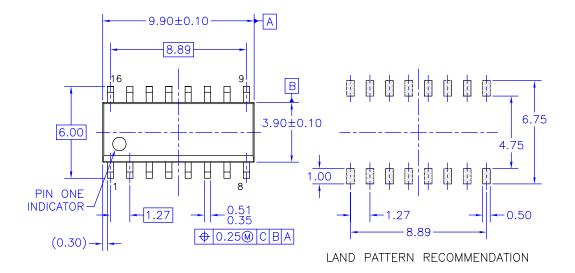
AC Electrical Characteristics⁽⁵⁾

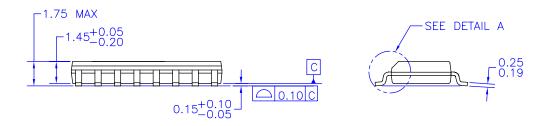
CD4060BC $T_A = 25^{\circ}C$, $C_L = 50pF$, $R_L = 200k$, $t_r = t_f = 20$ ns, unless otherwise noted.

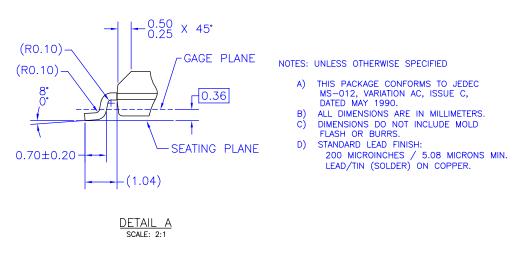
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{PHL4} , t _{PLH4}	Propagation Delay Time to Q ₄	$V_{DD} = 5V$		550	1300	ns
		$V_{DD} = 10V$		250	525	1
		$V_{DD} = 15V$		200	400	1
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	ns
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	1
		$V_{DD} = 15V$		45	90	1
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$		50	100	1
		$V_{DD} = 15V$		40	80	1
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		170	500	ns
		V _{DD} = 10V		65	170	†
		V _{DD} = 15V		50	125	1
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	ns
		$V_{DD} = 10V$			No Limit	
		$V_{DD} = 15V$			No Limit	1
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1	3		MHz
		$V_{DD} = 10V$	3	8		1
		V _{DD} = 15V	4	10		1
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	ns
111=(11)		V _{DD} = 10V		100	210	1
		V _{DD} = 15V		80	170	1
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	ns
		V _{DD} = 10V		100	210	1
		V _{DD} = 15V		80	170	1
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

Note:

5. AC Parameters are guaranteed by DC correlated testing.


RC Oscillator Notes:


- 1. $R_2 = 2 R_1 \text{ to } 10 R_1$
- 2. RC Oscillator applications are not recommended at supply voltages below 7.0V for $R_1 < 50 k\Omega$


3.
$$f \approx \frac{1}{2.2 R_1 C_X}$$
 at $V_{CC} = 10V$

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

M16AREVK

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

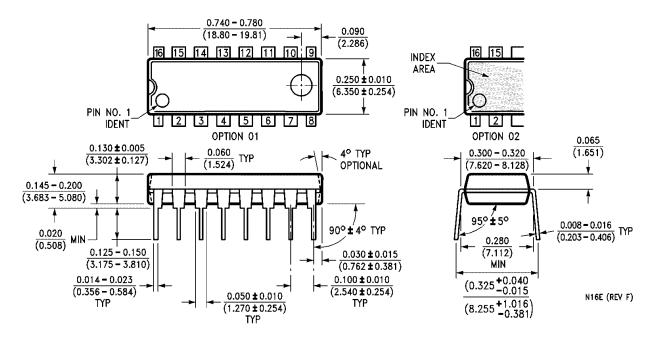


Figure 2. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power ResourceSM Green FPS™	Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE®	Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8	SyncFETTM The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ SerDes™ UHC® UniFET™ VCX™
--	---	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification		Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I28